Diffusion of interstitial atoms in interstitial alloys FeSi and FeH with BCC structure under pressure

48  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ Hꢀ NỘI  
DIFFUSION OF INTERSTITIAL ATOMS IN INTERSTITIAL ALLOYS  
FeSi AND FeH WITH BCC STRUCTURE UNDER PRESSURE  
1
Nguyen Quang Hꢀc1( ), Bui Duc Tinh1, Dinh QuangVinh1, Le Hong Viet2  
Hanoi National University of Education  
Tran Quoc Tuan University  
Abstract: In our previous paper [10], the analytic expressions with free energy of  
interstitial atom, the nearest neighbor distance between two interstitial atoms, the alloy  
parameters for interstitial atom, the diffusion quantities such as the jumping frequency of  
interstitial atom, the effective jumping length, the correlation factor, the diffusion  
coefficient and the activated energy together with the equation of state for the interstitial  
AB with BCC structure under pressure are derived from the statistical moment method. In  
this paper, we apply these theoretical results to interstitial FeSi and FeH in the interval  
of interstitial atom concentration from 0 to 5%, the interval of temperature from 100 to  
1000K and the interval of pressure from 0 to 70GPa. Our calculated results are in good  
agreement with experiments or predict the experimental results.  
Keywords: Interstitial alloy, jumping frequency, effective jumping length, correlation  
factor, diffusion coefficient, activated energy  
1. INTRODUCTION  
Study on the diffusion theory of metals and alloys pays attention to researchers [1ꢀ10].  
In previous paper [10], by the statistical moment method (SMM) [5ꢀ7, 10]we derive the  
analytic expressions of the free energy of interstitial atom, the nearest neighbor distance  
between two interstitial atoms, the alloy parameters for interstitial atom, the diffusion  
quantities such as the jumping frequency of interstitial atom, the effective jumping length,  
the correlation factor, the diffusion coefficient and the activated energy together with the  
equation of state for the interstitial AB with BCC structure under pressure. In this paper,  
we apply the theoretical results in [10] to the interstitial alloys FeSi and FeHin the interval  
of interstitial atom concentration from 0 to 5%, in the interval of temperature from 100 to  
(1)  
Nhꢁn bài ngày 19.8.2016; gꢂi phꢃn biꢄn và duyꢄt ñăng ngày 15.9.2016  
Liên hꢄ tác giꢃ: Bùi Đꢅc Tĩnh; Email: bdtinh@hnue.edu.vn  
TẠP CHÍ KHOA HỌC SỐ 8/2016  
49  
1000K and in the interval of pressure from 0 to 70GPa. Some calculated results are  
compared with experiments, where we use the Arrhenius law.  
2. CONTENT  
For the interstitial alloy FeSi, we use the nꢀm interaction potemtial [7]  
m   
d
r
r
r
n  
0   
0   
ϕ
(r) =  
m
n  
,
(1)  
n m  
r
where  
is the distance between two atoms corresponding to the minimum of potetial  
energy, that takes the value ꢀ d, mand nare the numbers which have different values for  
different atoms and are determined emperically on the basis of experimental data.  
r ,d,m  
The parameters  
and n of the nꢀm potental (1) for the interaction potetials FeꢀFe and  
0
SiꢀSi are given in Table 1.  
r ,d,m  
Table 1. The parameters  
and n of the interaction potentialsFeꢀFe and SiꢀSi  
0
m
n
d (1016 erg)  
6416.448  
45128.34  
r0(1010m)  
2.4775  
2.295  
Fe  
Si  
7
6
11.5  
12  
We use the following approximation  
1
ϕFeꢀSi  
ϕ
(
+
ϕSiꢀSi  
.
(2)  
(3)  
)
FeꢀFe  
2
For the interstitial alloy FeH, we use the Morse potential [10]  
2  
α
rr  
α rr  
0
ϕ
(
r
) = D e  
) 2e−  
,
(
(
)   
0
where  
= ꢀ  
potential for the alloy FeH are given in Table 2.  
Table 2. The parameters of the Morse for the interstitial alloy FeH  
αhas the dimension of distance inverse,  
Dhas the dimension of energy (eV) and  
D
,
the equilibrium distance of two atoms. The parameters of the Morse  
r0 (Ǻ)  
D (eV)  
α (Ǻ)  
1.73  
0.32  
1.34  
50  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ Hꢀ NỘI  
For the interstitial alloy FeSi, we use the potential (1) for the interaction potentials Feꢀ  
Fe and SiꢀSi with the potential parameters in Table 1and use the appoximation (2) for the  
interaction potential FeꢀSi. Using the formulae in the previous paper, we find the  
expressions of the cohesive energy 0B and the alloy parameters k B ,  
γ
B of the atom Si in  
U
the position 1 in the interstitial alloy FeSi as follows  
1.755118523.108 5.586962213.1010 4.969164799.108 8.453440955.1010  
U01B  
=
+
,
(4)  
(5)  
(6)  
r11,5  
r7  
r9  
r11  
r12  
r6  
2.451815336.106 2.693657436.107 7.543922121.106 2.808431783.108  
k1B  
=
+
,
r13,5  
r14  
r8  
r10  
5.17258208.105 2.117826188.107 1.735930771.104 1.671565741.107  
γ1B  
=
+
.
r15,5  
r16  
U
Analogously, we can obtain the expressions of the cohesive energy 0B and the alloy  
parameters k B ,  
B of the atom Si in the positions 2 and 3 in the interstitial alloy FeSi.  
For the interstitial alloy FeH, we use the potential (3) for the interction potentials  
γ
r , D  
α
FeꢀFe, FeꢀH, HꢀFe,HꢀH with the potential parameters  
and  
in Table 2. The  
0
and the alloy parameters k B ,  
γ
B of the atom Si in  
U
expressions of the cohesive energy  
0B  
the position 1 in the interstitial alloy FeH have the form:  
U01B = 5.289022639.1011e2.68r 1.0414153.1011e1.34r +1.057804528.1010 e3.790092346r  
2.0828306.1011e1.895046173r  
,
(7)  
k1B = 3.79878762.1010 e2.68r 1.869965313.1011e1.34r +3.039030097.1010 e5.992662178r  
2.004588422.1010 e3.790092346r 1.973530079.1011 e1.895046173r  
1.49597225.1011 e2.996331089r  
,
(8)  
r
r
1.018075082.109 e2.68r  
γ1B = 4.547402034.1010 e2.68r 5.59618286.1012 e1.34r  
+
r
2.505753519.1011e1.34r 7.198877938.1010 e3.790092346r  
+
+
r
r
1.771835304.1011e1.895046173r 7.59757524.1010 e2.68r 3.739930626.1011e1.34r  
+
+
+
+
r
r2  
r2  
2.834916134.1010e2.68r 2.790993004.1011e1.34r  
+
+
,
(9)  
r3  
r3  
U
Analogously, we can obtain the expressions of the cohesive energy 0B and the alloy  
parameters k B ,  
γ
B of the atom Si in the positions 2 and 3 in the interstitial alloy FeH.  
TẠP CHÍ KHOA HỌC SỐ 8/2016  
51  
In the case of applying the nꢀ m potential (1), the cohesive energy between atoms in  
the clean metal A has the form [6]  
n  
m   
d
r
r
0
0
U0 A  
=
mA  
nA  
,
(10)  
n   
m   
n m  
r
r
1A  
1A  
r
r
01A is the neraest  
where 1A is the neraest neighbour between atoms A at temperature  
T
,
neighbour between atoms A at temperature 0 K and is determined from the minimum  
condition of the cohesive energy. Therefore, it has the following form:  
An  
nm  
r = r  
.
(11)  
01A  
0
Am  
Then, the metal parameters k A,γ1A,γ2A and γ A have the form as in [6]  
According to figures from Figure 1to Figure 3, at the same pressure, when the  
temperature increases, the activated energy decreases, the coefficient D0 changes  
increases. In the same pressure, in is a  
. In the same temperature, when the pressure  
E
negligibly and the diffusion coefficient  
monotonously decreasing function of 1/  
D
D
T
increases, the activated energy  
coefficient and ln decreases.  
The dependences of the diffusion coefficient  
E increases, the coefficient D0 increases, the diffusion  
D
D
D
and the coefficient D0 on interstitial  
atom concentration, temperature and pressure for the interstitial alloy FeSi are illustrated  
by figures from Figure 4 to Figure 11. When the concentration of interstitial atoms Si  
increases, the coefficients D0 and  
D
of alloy FeSi increase. This absolutely agrees with  
experiments.  
28  
40  
FeꢀSi  
P=0 (GPa)  
P=30 (GPa)  
P=70 (GPa)  
P = 0 (GPa)  
P = 30(GPa)  
P = 70(GPa)  
FeꢀSi  
27  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
100  
200  
300  
400  
500  
600  
700  
800  
900 1000  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
T(K  
)
T(K)  
Fig 2. D0(T) of FeSi at P = 0, 30 and 70 GPa  
Fig 1. E(T) of FeSi at P = 0, 30 and 70 GPa  
52  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ Hꢀ NỘI  
16  
0
ꢀ20  
P= 0 (GPa)  
FeꢀSi  
P = 0 (GPa)  
P = 30 (GPa)  
P = 70 (GPa)  
15  
FeꢀSi  
P= 30 (GPa)  
P= 70 (GPa)  
T=300K  
14  
13  
12  
11  
10  
9
ꢀ40  
ꢀ60  
ꢀ80  
ꢀ100  
ꢀ120  
ꢀ140  
ꢀ160  
ꢀ180  
ꢀ200  
8
7
6
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0.002  
0.004  
0.006  
0.008  
0.010  
C
(%)  
si  
1/T  
Fig 4. D0(cSi) of FeSi at P = 0, 30, 70 GPa  
and T = 300K  
Fig 3. lnD (1/T) at P = 0, 30 and 70 GPa  
for FeSi  
According to our numerical results for alloy FeSi, when the interstial atom Si is in  
face centres of BCC lattice of Fe at zero pressure and under pressure, this atom Si can not  
diffuse through sides of lattice cells to come next cell (the first way) but only can move  
from this face centre to other face centre (the second way). The interstitial atom Si changes  
locally the lattice constants. In the lattice cells containing the interstitial atom Si, the lattice  
constants expanse considerably. Our calculated results are in relatively good agreement  
with the experimental data [8,9]. At  
= 1.4.10ꢀ6 cm2/s according to the experimental data [8]. Accordinng to our calculated  
P = 0, T cSi = 4.9%, the alloy FeSi has D  
= 1150oC and  
result, at  
P
= 0,  
T
= 1000K, cSi = 5%, the alloy FeSi hasD  
= 0.08. 10ꢀ6 cm2/s.  
16  
15  
14  
13  
12  
11  
10  
9
FeꢀS  
i
6.4  
6.2  
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
P= 0,  
T=300K  
P= 0 (GPa)  
P= 30 (GPa)  
P= 70 (GPa)  
FeꢀSi  
T=900K  
8
7
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
6
C
(%)  
Si  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
C
(%)  
si  
Fig 6. D(T) of FeSi at P = 0 and T = 300K  
Fig 5. D0(cSi) of FeSi at P = 0, 30, 70 GPa  
and T = 900K  
TẠP CHÍ KHOA HỌC SỐ 8/2016  
53  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
FeꢀS  
i
FeꢀS  
i
P= 30,  
T=300K  
P= 0,  
T=900K  
8.4  
8.2  
8.0  
7.8  
7.6  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
C (%)  
Si  
C
(%)  
Si  
Fig 8. D(T) of FeꢀSi at P = 30 GPa  
and T = 300K  
Fig 7. D(T) of FeSi at P = 0 and T = 900K  
At  
and at  
[9]. Accordinng to our calculated result, at  
D0 = 0.9.10ꢀ3 cm2/s,  
= 0.19479 kcal/mol. Figure 3 shows the dependence of ln  
P
= 0 and from 200 to 780oC, the alloy FeH has D0 = 1.4.10ꢀ3 cm2/s,  
= 700oC, the alloy FeH có = 2.45.10ꢀ4 cm2/s according to the experimental data  
= 0, = 1000K, the alloy FeH has  
on 1/T  
E = 0.139eV  
T
D
P
T
E
D
for alloy FeSi and has a linear form. This means that in the interval of temperature from  
100 to 1000K, the Arrhenius law absolutely is satisfied.  
Our calculate results for alloy FeH are an analogue with ones for alloy FeSi and are  
illustrated by figures from Figure 12 to Figure 19. According to our numerical results for  
alloy FeH, when the interstial atom H is in face centres of BCC lattice of Fe at zero  
pressure and under pressure, this atom H also can not diffuse through sides of lattice cells  
to come next cell (the first way) but only can move from this face centre to other face  
centre (the second way). Our calculated result can predict the experimental result.  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
FeꢀS  
i
FeꢀS  
i
P= 70,  
T=300K  
P= 30,  
T=900K  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
C
(%)  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Si  
C
(%)  
Si  
Fig 10. D(T) ofFeSiat P = 70 GPa  
and T = 300K  
Fig 9. D(T) ofFeSiat P = 30 GPaand T = 900K  
54  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ Hꢀ NỘI  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
0.40  
FeꢀS  
i
FeꢀH  
P= 70,  
T=900K  
P= 0 (GPa)  
P= 30 (GPa)  
P= 70 (GPa)  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
C
(% )  
Si  
T(K)  
Fig 11. D(T) of FeSi at P = 70 GPa  
and T = 900K  
Fig 12. E(T) of FeH at P = 0, 30  
and 70 GPa  
13.0  
5
0
FeꢀH  
FeꢀH  
T=300K  
P= 0 (GPa)  
P = 30(Gpa)  
P= 70(GPa)  
P = 0 (GPa)  
P =30 (GPa)  
P =70 (GPa)  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
ꢀ5  
ꢀ10  
ꢀ15  
ꢀ20  
ꢀ25  
ꢀ30  
ꢀ35  
ꢀ40  
ꢀ45  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
1/T  
C (%)  
H
Fig 13. lnD (1/T) at P = 0, 30 and 70 GPa  
for FeH  
Fig 14. D0(cH) of FeH at P = 0, 30, 70 GPa  
and T = 300K  
13.0  
FeꢀH  
P
P
P
=
0
(G P a)  
FeꢀH  
T=300K  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
1.0429  
P= 0 GPa  
T=900K  
=30 (G P a)  
= 70 (G P a)  
1.0428  
1.0427  
1.0426  
1.0425  
1.0424  
1.0423  
1.0422  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
C
(% )  
H
C
(%)  
H
Fig 15. D0(cH) of FeꢀH at P = 0, 30, 70 GPa  
and T = 900K  
Fig 16. D(cH) of FeH at P = 0  
and T = 300K  
TẠP CHÍ KHOA HỌC SỐ 8/2016  
55  
6 .8 0  
5 .3 0  
5 .2 8  
5 .2 6  
5 .2 4  
5 .2 2  
5 .2 0  
F e H  
T = 3 0 0 K  
F e H  
T = 3 0 0 K  
P = 3 0 G P a  
P = 7 0 G P a  
6 .7 5  
6 .7 0  
6 .6 5  
6 .6 0  
6 .5 5  
1 .0  
1 . 5  
2 .0  
2 .5  
3 .0  
3 .5  
4 .0  
4 .5  
5 .0  
1 .0  
1 .5  
2 .0  
2 .5  
3 .0  
3 .5  
4 .0  
4 .5  
5 .0  
C
(%  
)
C
(% )  
H
H
Fig 17. D(cH) of FeH at P = 30 GPa  
and T = 300K  
Fig 18. D(cH) of FeH at P = 70 GPa  
and T = 300K  
1.630  
1.625  
1.620  
1.615  
1.610  
1.605  
1.600  
FeꢀH  
T=900K  
P= 70 GPa  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
C
(%)  
H
Fig 19. D(cH) of FeH at P = 70 GPa and T = 900K  
3. CONCLUSION  
Our numerial results for alloys FeX (X =Si, H) are obtained by applying the diffusion  
theory builded from the SMM, using the nꢀm potential and the Morse potential and the  
coordination sphere method. These results show that the diffusion mechanism of interstitial  
atom in interstitial alloy depends on the size of interstitial atom and the interaction between  
interstitial atom and main atom of alloy. The numerial results are in goog agreement with  
experiments or can predict the experimental results because the exact determination of  
diffusion quantities is a very difficult problem experimentally. Figure 13 for the  
dependence of ln  
D on 1/T has the linear form This mean that our obtained results are in  
good agreement with the Arrhenius law in the interval of temperature below the structural  
phase transition of iron.  
56  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ Hꢀ NỘI  
REFERENCES  
1. K.M.Zhao, G.Jiang, L.Wang (2011), Electronic and thermodynamic properties of B2ꢀFeSi  
from first principles, Physica B406, pp.363ꢀ357.  
2. W. F. Smith, 1993, Structure and properties of engineering alloys, McGrawꢀHill, Inc.  
3. S. L. Chaplot, R. Mittal, N, Chouduhry (2010), Thermodynamic properties of solids:  
experiment and modeling, WileyꢀVCH VerlagGmBh&Co.KgaA.  
4. Y. Fukai (1993), Themetalꢀhydrogen system. Springer. Berlin.  
5. H. V. Tich (2000), Diffusion theory of metal and alloy, PhD thesis, Hanoi National University  
of Education (HNUE).  
6. V. V. Hung (2009), Statistical moment method in stying on thermodynamic and elastic  
properties of crystal, HNUE Publishing House.  
7. N. Q. Hoc, D. Q.Vinh, B. D.Tinh, T.T.C.Loan, N.L.Phuong, T.T.Hue, D.T.T.Thuy (2015),  
Thermodynamic properties of binary interstitial alloys with a BCC structure: dependence on  
temperature and concentration of interstitial atoms, Journal of Science of HNUE, Math. and  
Phys. Sci.60, 7, pp.146ꢀ155  
8. C.J. Smithells (1962), Metals reference book, Butter Worths, XIV, pp.586ꢀ1105  
9. A.S.Nowich, J.J.Burton, J.Volkl,G.Alefeld (1975), Diffusion in solids: Recent developments  
10. N.Q.Hoc, D.Q.Vinh, L.H.Viet, N,V.Phuong (2016), Study on diffusion theory of binary  
interstitial alloy with BCC structure under pressure, Journal of Science of HNUE, Math. and  
Phys. Sci. 61,4, pp.3ꢀ9.  
NGHIÊN CꢁU Sꢂ KHUꢃCH TÁN CꢄA NGUYÊN Tꢅ XEN Kꢆ  
TRONG CÁC HꢇP KIM XEN Kꢆ FeꢈSi VÀ FeꢈH VꢉI CꢊU TRÚC  
LꢋP PHƯƠNG TÂM KHꢌI DƯꢉI TÁC DꢍNG CꢄA ÁP SUꢊT  
Tóm tꢁt: Trong bài báo trưꢂc [10], chúng tôi rút ra biꢃu thꢄc giꢅi tích ñꢆi vꢂi năng  
lưꢇng tꢈ do cꢉa nguyên tꢊ xen kꢋ, khoꢅng cách lân cꢌn gꢍn nhꢎt giꢏa hai nguyên tꢊ xen  
kꢋ, các thông sꢆ hꢇp kim ñꢆi vꢂi nguyên tꢊ xen kꢋ, các ñꢐi lưꢇng khuꢑch tán như tꢍn sꢆ  
bưꢂc nhꢅy cꢉa nguyên tꢊ xen kꢋ, ñꢒ dài bưꢂc nhꢅy hiꢓu dꢔng, thꢕa sꢆ tương quan, hꢓ sꢆ  
khuꢑch tán và năng lưꢇng kích hoꢐt cùng vꢂi phương trình trꢐng thái cꢉa hꢇp kim kim  
xen kꢋ AB vꢂi cꢎu trúc lꢌp phương tâm khꢆi dưꢂi tác dꢔng cꢉa áp suꢎt bꢖng phương  
pháp mômen thꢆng kê. Trong bài báo này, chúng tôi áp dꢔng các kꢑt quꢅ lí thuyꢑt này  
cho các hꢇp kim xen kꢋ FeꢀSi và FeꢀH trong vùng nꢗng ñꢒ nguyên tꢊ xen kꢋ tꢕ 0 ñꢑn 5%,  
vùng nhiꢓt ñꢒ tꢕ 100 ñꢑn 1000K và vùng áp suꢎt tꢕ 0 ñꢑn 70GPa. Kꢑt quꢅ tính toán phù  
hꢇp khá tꢆt vꢂi sꢆ liꢓu thꢈc nghiꢓm hoꢘc dꢈ báo thꢈc nghiꢓm  
Tꢕ khoá: Hꢇp kim xen kꢋ, tꢍn sꢆ bưꢂc nhꢅy, ñꢒ dài bưꢂc nhꢅy hiꢓu dꢔng, nhân tꢆ tương  
quan, hꢓ sꢆ khuyꢑch tán, năng lưꢇng kích hoꢐt  
pdf 9 trang yennguyen 18/04/2022 1100
Bạn đang xem tài liệu "Diffusion of interstitial atoms in interstitial alloys FeSi and FeH with BCC structure under pressure", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

File đính kèm:

  • pdfdiffusion_of_interstitial_atoms_in_interstitial_alloys_fesi.pdf