Isolation of lignans and neolignans from Pouzolzia sanguinea with their cytotoxic activity

Cite this paper: Vietnam J. Chem., 2021, 59(2), 146-152  
DOI: 10.1002/vjch.202000120  
Article  
Isolation of lignans and neolignans from Pouzolzia sanguinea with their  
cytotoxic activity  
Le Thi Hong Nhung1,2, Nguyen Thi Hoang Anh1,3, Bui Huu Tai1,4, Phan Van Kiem1,4*  
1Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18  
Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam  
2Faculty of Chemical Technology, Hanoi University of Industry, Bac Tu Liem, Hanoi 10000, Viet Nam  
3Institute of Chemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam  
4Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam  
Submitted July 13, 2020; Accepted August 5, 2020  
Abstract  
One lignan (7′S,8′R,8S)-4,4′-dihydroxy-3,3′,5,5′-tetramethoxy-7′,9-epoxylignan-9′-ol-7-one (1) together with four  
neolignans (7α,8α)-dihydrodehydrodiconiferyl alcohol 9-O-β-D-glucopyranoside (2), (7α,8α)-dihydrodehydro-  
diconiferyl alcohol 9′-O-β-D-glucopyranoside (3), icariside E3 (4), and icariside E5 (5) were isolated from Pouzolzia  
sanguinea. Their chemical structures were elucidated by ESI-MS, NMR spectra, as well as in comparison with the data  
reported in literature. At concentration of 30 µM, compounds 1-5 exhibited weak cytotoxic activity with cell viability  
percentages ranging from 59.9±0.98 % to 84.2±0.98 % and from 77.7±0.81 % to 100.3±0.78 % on CAL27 (oral  
adenosquamous carcinoma cell) and MDA-MB-321 (breast cancer cell) cell lines, respectively.  
Keywords. Pouzolzia sanguinea, lignan, neolignan, cytotoxicity.  
1. INTRODUCTION  
2. MATERIALS AND METHODS  
2.1. Plant materials  
Pouzolzia species have been used to treat ulcers in  
traditional medicinal remedy in several countries such  
as India, China, Thailand, and Vietnam.[1-3] Previous  
reports indicated that methanolic extract of P. indica  
significantly exhibited anti-proliferative effect and  
induced apoptotic process on NB4 and HT93A acute  
leukemic cell lines.[3] Phytochemical studies on  
Pouzolzia genus revealed the presence of norlignans,  
prenylated isoflavones, triterpenes which have shown  
anti-inflammation and cytotoxic activities.[4,5] In our  
previous report, several norlignans were identified  
from aerial parts of P. sanguinea. Their chemical  
structures were remarkable not only by the loss of one  
carbon in lignan skeleton but also the presence of an  
additional benzene ring.[6] Continuously, herein, we  
report the isolation and identification of one lignan  
and four neoligans from P. sanguinea. Cytotoxic  
effects of the isolated compounds were evaluated on  
CAL27 and MDA-MB-231 cell lines using 3-(4,5-  
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium  
Plant materials were collected at Da Lat, Lam  
Dong, Vietnam in March 2018. Plant taxonomy,  
Pouzolzia sanguinea (Blume) Merr. was identified  
by Dr. Nguyen The Cuong, Institute of Ecology  
and Biological Resources, VAST. Voucher  
specimen (NCCT0318) was kept at the Institute of  
Ecology and Biological Resources, VAST.  
2.2. General experimental procedures  
The used characterization techniques are the same as  
described elsewhere.[14]  
2.3. Extraction and isolation  
The dried powdered P. sanguinea sample (5.0 kg)  
was ultrasonic extracted with MeOH for three times  
to get MeOH extract (350g). The MeOH extract was  
suspended with water and successively separated in  
n-hexane, dichloromethane, and ethyl acetate to give  
bromide (MTT) assay.  
146 Wiley Online Library © 2021 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH GmbH  
Vietnam Journal of Chemistry  
Phan Van Kiem et al.  
corresponding soluble fractions and water layer. volume of methanol) to give four fractions PSW1-  
Ethyl acetate extract (34 g) was separated on a silica PSW4. Fraction PSW3 (8 g) was separated on a  
gel column, eluting with gradient solvent system of silica gel column chromatography, eluting with  
dichloromethane/MeOH (0-100  
%
volume of dichloromethane/methanol/water (6/1/0.1, v/v/v) to  
methanol) to give 6 fractions, PSE1-PSE6. Fraction give three fractions PSW3A- PSW3C. Fraction  
PSE2 was chromatographed on a RP-18 column and PSW3B was purified by preparative HPLC using  
eluted with MeOH/water (1/1, v/v) to give 3 isocratic mobile phase 21 % acetonitrile in water to  
fractions, PSE2A-PSE2C. PSE2B was purified by give compounds 3 (8.4 mg, tR 39.6 min) and 2 (3.6  
preparative HPLC using isocratic mobile phase 25 % mg, tR 42.2 min). Finally, fraction PSW3C was  
acetonitrile in water to give compound 1 (4.6 mg, tR purified by preparative HPLC using isocratic mobile  
49.2 min). Water layer was loaded on diaion HP-20 phase 18 % acetonitrile in water to obtain  
column, washed with water, and then eluted with compounds 4 (10.6 mg, tR 40.3 min) and 5 (23.9 mg,  
water/methanol (25 %, 50 %, 75 %, and 100 % tR 42.7 min).  
Figure 1: Chemical structures of compounds 1-5  
O-β-D-glucopyranoside  
(2):  
Pale  
yellow  
(7′S,8′R,8S)-4,4′-Dihydroxy-3,3′,5,5′-  
   
tetramethoxy-7′,9-epoxylignan-9′-ol-7-one  
(1):  
[ ]  
amorphous powder;   -20.8 (c 0.1, MeOH); ESI-  
 
1
   
[ ]  
Yellow gum;   
-11.4° (c 0.1, MeOH); ESI-MS: MS m/z 545 [M+Na]+; H-NMR (CD3OD, 500  
 
1
13  
m/z 435 [M+H]+; H-NMR (CD3OD, 500 MHz) δH MHz) and C-NMR (CD3OD, 125 MHz) data, see  
7.41 (2H, s, H-2 and H-6), 4.30 (1H, m, H-8), 4.20 table 1.  
(1H, dd, J = 8.0, 8.5 Hz, Ha-9), 4.27 (1H, dd, J = 4.5,  
(7α,8α)-Dihydrodehydrodiconiferyl  
alcohol  
8.5 Hz, Hb-9), 6.75 (2H, s, H-2′ and H-6′), 4.67 (1H, 9′-O-β-D-glucopyranoside  
(3):  
Pale-yellow  
   
d, J = 8.0 Hz, H-7′), 2.67 (1H, m, H-8′), 3.71 (1H,  
dd, J = 4.5 and 11.5 Hz, Ha-9′), 3.67 (1H, dd, J =  
4.5, 11.5 Hz, Hb-9′), 3.94 (6H, s, 3,5-OCH3), 3.88  
[ ]  
amorphous powder;   -16.5 (c 0.1, MeOH); ESI-  
 
MS m/z 545 [M+Na]+; 1H-NMR (CD3OD, 500 MHz)  
and 13C-NMR (CD3OD, 125 MHz) data, see table 1.  
13  
(6H, s, 3′,5′-OCH3); C-NMR (CD3OD, 125 MHz)  
Icariside E3 (4): Pale-yellow amorphous  
   
δC 128.5 (C-1), 107.8 (C-2), 149.2 (C-3), 143.4 (C-  
4), 149.2 (C-5), 107.8 (C-6), 200.3 (C-7), 50.2 (C-8),  
71.6 (C-9), 132.9 (C-1′), 105.3 (C-2′), 149.3 (C-3′),  
136.4 (C-4′), 149.3 (C-5′), 105.3 (C-6′), 85.5 (C-7′),  
55.1 (C-8′), 61.4 (C-9′), 56.9 (3,5-OCH3), and 56.8  
(3′,5′-OCH3).  
[ ]  
powder;   
-33.7 (c 0.1, MeOH); ESI-MS m/z  
 
547 [M+Na]+; H-NMR (CD3OD, 500 MHz) and  
1
13C-NMR (CD3OD, 125 MHz) data, see table 2.  
Icariside E5 (5): Pale-yellow amorphous powder;  
   
[ ]  
 
-26.1 (c 0.1, MeOH); ESI-MS m/z 545  
 
[M+Na]+;1H-NMR (CD3OD, 500 MHz) and 13C-  
(7α,8α)-Dihydrodehydrodiconiferyl alcohol 9-  
NMR (CD3OD, 125 MHz) data, see table 2.  
© 2021 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH GmbH www.vjc.wiley-vch.de 147  
Vietnam Journal of Chemistry  
Isolation of lignans and neolignans from…  
Table 1: 1H- and 13C-NMR spectral data for compounds 2 and 3  
2
3
No.  
a,bδC  
a,cδH (mult., J in Hz)  
-
a,bδC  
134.9  
110.6  
149.1  
147.3  
116.2  
119.7  
89.0  
a,cδH (mult., J in Hz)  
-
1
2
3
4
5
6
7
8
134.8  
110.8  
149.0  
147.7  
116.1  
119.7  
89.0  
7.01 (d, 1.5)  
6.97 (d, 2.0)  
-
-
-
-
6.77 (d, 8.0)  
6.89 (dd, 8.0, 1.5)  
5.62 (d, 6.5)  
3.67 (m)  
6.78 (d, 8.0)  
6.84 (dd, 8.0, 2.0)  
5.51 (d, 6.5)  
3.48 (m)  
53.3  
55.4  
72.3  
3.78 (dd, 10.0, 7.0)  
4.23 (dd, 10.0, 5.0)  
-
6.74 (br s)  
-
65.0  
3.78 (dd, 11.0, 7.0)  
3.85 (dd, 11.0, 5.5)  
-
6.77 (br s)  
-
-
-
6.77 (br s)  
2.70 (t, 7.5)  
1.93 (m)  
9
1′  
2′  
3′  
4′  
5′  
6′  
7′  
8′  
136.9  
114.3  
145.2  
147.4  
129.7  
118.2  
35.8  
136.8  
114.3  
145.2  
147.5  
129.9  
118.1  
32.9  
-
-
6.80 (br s)  
2.64 (t, 7.5)  
1.84 (m)  
32.9  
32.9  
9′  
62.2  
3.59 (t, 6.5)  
69.9  
3.55 (m)/ 3.94 (m)  
Glc  
1′′  
2′′  
3′′  
4′′  
5′′  
104.6  
75.2  
78.3  
71.7  
78.1  
62.8  
4.37 (d, 8.0)  
3.24 (dd, 8.0, 9.0)  
3.38 (t, 9.0)  
3.35 (t, 9.0)  
3.30 (m)  
3.68 (dd, 12.0, 5.0)  
3.86 (dd, 12.0, 2.5)  
3.84 (s)  
104.5  
75.2  
78.2  
71.7  
77.9  
62.8  
4.27 (d, 7.5)  
3.22 (dd, 7.5, 9.0)  
3.38 (t, 9.0)  
3.31 (t, 9.0)  
3.28 (m)  
3.69 (dd, 11.5, 5.5)  
3.88 (dd, 11.5, 2.5)  
3.84 (s)  
6′′  
3-OCH3  
3′-OCH3  
56.5  
56.8  
56.4  
56.8  
3.87 (s)  
3.87 (s)  
Measured in a) CD3OD, b)125 MHz, c)500 MHz.  
Figure 2: The key HMBC correlations of compounds 1-4  
© 2021 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH GmbH www.vjc.wiley-vch.de 148  
Vietnam Journal of Chemistry  
Table 2: 1H- and 13C-NMR spectral data for compounds 4 and 5  
Phan Van Kiem et al.  
4
5
No.  
1
2
3
4
a,bδC  
133.3  
a,cδH (mult., J in Hz)  
-
a,bδC  
a,cδH (mult., J in Hz)  
-
133.2  
113.8  
148.4  
145.4  
115.7  
122.6  
39.2  
113.7  
148.4  
145.3  
115.6  
122.6  
39.2  
6.57 (d, 1.5)  
6.58 (d, 2.0)  
-
-
-
-
5
6
6.59 (d, 8.0)  
6.49 (dd, 8.0, 1.5)  
2.99 (dd, 14.0, 5.0)  
2.72 (dd, 14.0, 9.0)  
3.99 (m)  
3.68 (dd, 11.0, 5.0)  
3.76 (dd, 11.0, 6.0)  
-
6.59 (d, 8.0)  
6.50 (d, 8.0, 2.0)  
2.99 (dd, 14.0, 5.5)  
2.74 (dd, 14.0, 8.5)  
3.99 (m)  
3.68 (dd, 11.5, 5.5)  
3.78 (dd, 11.5, 2.5)  
-
7
8
9
42.8  
67.1  
42.8  
66.8  
1′  
2′  
3′  
4′  
5′  
6′  
7′  
8′  
9′  
140.3  
111.8  
153.1  
143.6  
138.5  
120.4  
33.1  
135.4  
109.2  
153.5  
145.0  
139.0  
119.2  
131.5  
129.7  
63.7  
6.73 (br s)  
-
6.93 (d, 2.0)  
-
-
-
-
-
6.73 (br s)  
2.65 (t, 7.5)  
1.83 (m)  
6.95 (d, 2.0)  
6.58 (d, 15.5)  
6.32 (td, 6.0, 15.5)  
4.24 (d, 6.0)  
35.5  
62.2  
3.57 (t, 6.5)  
Glc  
1′′  
2′′  
3′′  
4′′  
5′′  
105.6  
75.9  
77.9  
71.3  
78.1  
62.5  
4.63 (d, 7.5)  
3.47 (dd, 7.5, 9.0)  
3.42 (t, 9.0)  
3.39 (t, 9.0)  
3.14 (m)  
3.69 (dd, 11.5, 5.0)  
3.80 (dd, 11.5, 2.5)  
3.84 (s)  
105.4  
76.0  
77.9  
71.3  
78.1  
62.5  
4.70 (d, 7.5)  
3.48 (dd, 7.5, 9.0)  
3.43 (t, 9.0)  
3.39 (t, 9.0)  
3.15 (m)  
3.69 (dd, 11.5, 5.5)  
3.79 (dd, 11.5, 2.5)  
3.85 (s)  
6′′  
3-OCH3  
3′-OCH3  
56.4  
56.3  
56.4  
56.3  
3.71 (s)  
3.71 (s)  
Measured in a) CD3OD, b)125 MHz, c)500 MHz.  
3. RESULTS AND DISCUSSION  
(each 2C)], and two aliphatic methine groups (δC  
55.1 and 50.2). Appearance of two pair of aromatic  
1
Compound 1 was isolated as a yellow gum. The H- protons (δH 7.41 and 6.75) and four pair of aromatic  
NMR and HSQC spectra of 1 showed proton signals carbons (δC 149.3, 149.2, 107.8, 105.3) magnetically  
corresponding to four aromatic protons [δH 7.41 and equivalent indicated the presence of two symmetric  
6.75 (each, 2H, s)], four methyl groups [δH 3.94 and 1,3,4,5-tetrasubtitited benzene rings. The HMBC  
3.88 (each, 3H, s)], one oxygenated methine group correlations between H2-9 (δH 4.27 and 4.20) and C-  
[δH 4.67 (1H, d, J = 8.0 Hz)], two oxygenated 8′ (δC 55.1)/C-8 (δC 50.2)/C-7′ (δC 85.5), H-7′ (δH  
methylene groups [δH 4.27 (1H, dd, J = 4.5, 8.5 Hz) 4.67) and C-8′/C-8 /C-9 (δC 71.6) demonstrated the  
and 4.20 (1H, dd, J = 8.0, 8.5 Hz), 3.71 and 3.67 presence of tetrahydrofuran ring (C-ring, figures 1  
(each 1H, dd, J = 4.5, 11.5 Hz)], and two aliphatic and 2). Next, HMBC correlations between H-2′/H-6′  
methine groups [δH 4.30 and 2.67 (each, 1H, m)]. (δH 6.75) and C-4′ (δC 136.4), methoxy protons (δH  
The 13C-NMR and HSQC spectra of 1 showed 3.88) and C-3′/C-5′ (δC 149.3) supported assignment  
signals of 22 carbons including one carbonyl group of the first 4′-hydroxy-3′,5-dimethoxyphenyl group  
(δC 200.3), twelve aromatic carbons (δC (A-benzene ring). Furthermore, HMBC correlations  
105.3~149.3), one oxygenated methine group (δC between H-2′/H-6′ (δH 6.75) and C-7′ (δC 85.5)  
85.5), two oxygenated methylene groups (δC 71.6 indicated this 4′-hydroxy-3′,5′-dimethoxyphenyl  
and 61.4), four methoxy groups [δC 56.9 and 56.8 connect to tetrahydrofuran ring at C-7′. Carbon  
© 2021 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH GmbH www.vjc.wiley-vch.de 149  
Vietnam Journal of Chemistry  
Isolation of lignans and neolignans from…  
chemical shift value of C-9′ (δC 61.4), HMBC group linked to C-1′. HMBC correlations between  
correlations between H2-9′ (δH 3.71 and 3.67) and C- H-6′ (δH 6.80) and C-8 (δC 53.3)/C-4′ (δC 147.4), H-7  
7′ (δC 85.5)/C-8′ (δC 55.1)/C-8 (δC 50.2) suggested (δH 5.62)/H-8 (δH 3.67) and C-5′ (δC 129.7)/C-4′ (δC  
hydroxymethylene group was at C-8′. Second 147.4) established benzofuran moiety (A and C  
benzene ring moiety (B-benzene ring) was deduced rings, Fig. 1). Other benzene ring (B-ring) was  
to be 4-hydroxy-3,5-dimethoxybenzoyl group which established to be 3-methoxy-4-hydroxyphenyl group  
was confirmed by HMBC correlations between which was supported by HMBC correlations  
H-2/H-6 (δH 7.41) and C-4 (δC 143.4)/C-7 (δC between H-2 (δH 7.01)/H-6 (δH 6.89) and C-4 (δC  
200.3), between methoxy protons (δH 3.94) and C- 147.7), H-5 (δH 6.77)/3-OCH3 (δH 3.84) and C-3 (δC  
3/C-5 (δC 149.2). Additionally, HMBC correlations 149.0). Furthermore, HMBC correlations between  
between H-8′ (δH 2.67)/H-8 (δH 4.30)/H2-9 (δH 4.27 H-2/H-6 and C-7 (δC 89.0) indicated 3-methoxy-4-  
and 4.20) and C-7 (δC 200.3) indicated 4-hydroxy- hydroxyphenyl group connect to C-7 of benzofuran  
3,5-dimethoxybenzoyl  
group  
connected  
to moiety. Other methoxy group at C-3′ was also  
tetrahydrofuran ring at C-8 to form a lignan confirmed by HMBC correlations between 3′-OCH3  
backbone. Due to containing three chiral centers (C- (δH 3.87)/ H-2′ (δH 6.74) and C-3′ (δC 145.2). HMBC  
7′, C-8′, and C-8) relative configurations at those correlations between H2-9 (δH 4.23 and 3.78) and C-  
centers were examined by analysis of NOESY 7 (δC 89.0)/ C-8 (δC 53.3)/C-5′ (δC 129.7)/Glc C-1″  
spectrum. NOESY correlations between H2-9′ (δH (δC 104.6) proved O-glucosidic linkage at C-9. The  
3.71 and 3.67) and H-7′ (δH 4.67)/H-8 (δH 4.30) sugar linkage must be in the β-form identified by glc  
indicated the close proximity of hydroxymethylene JH-1/H-2 = 7.5 Hz. Relative configurations at C-7 and  
group (C-9′), H-7′, and H-8 as described in figure 1. C-8 were deduced to be 7α and 8α, respectively, by  
Finally, absolute configurations at C-7′, C-8′, and C- comparison their carbon chemical shifts (δC-7 89.0  
8 was determined to be 7′S, 8′R, and 8S by negative and δC-8 53.3) with that reported in the literature  
optical rotation [-11.4° (c 0.1, MeOH)] compared to (relative 7α,8α isomer[9]: δC-7 89.0 and δC-8 53.3),  
previous  
literature  
[(7′S,8′R,8S)-enanthiomer: relative 7β,8α isomer[10]: δC-7 83.3 and δC-8 54.1).  
-1.5°[7]: and (7′R,8′S,8R)-enanthiomer: +14°.[8] Furthermore, the ESI mass spectrum of 2 exhibited  
Furthermore, the ESI mass spectrum of 1 exhibited an ion peak at m/z 545 [M+Na]+, corresponding to  
an ion peak at m/z 435 [M+H]+, corresponding to the the molecular formula of C26H34O11. Consequently,  
molecular formula of C22H26O9. Thus, compound 1 compound  
was determined to be (7′S,8′R,8S)-4,4′-dihydroxy- dihydrodehydrodiconiferyl  
2
was determined as (7α,8α)-  
alcohol 9-O-β-D-  
3,3′,5,5′-tetramethoxy-7′,9-epoxylignan-9′-ol-7-one.  
glucopyranoside.  
Compound 2 was isolated as pale-yellow amorphous  
The 1H- and 13C-NMR data of compound 3 were  
1
powder. The H-NMR spectrum of 2 contained found very similar with compound 2, except signals  
signals corresponding to an ABX coupled spin of two oxygenated methylene groups [δC 65.0 (C-9)  
system [δH 7.01 (1H, d, J = 1.5 Hz), 6.89 (1H, dd, J and 69.9 (C-9′), table 1]. HMBC correlations  
= 1.5, 8.0 Hz), 6.77 (1H, d, J = 8.0 Hz)], an AX between H-7 (δH 5.51) and C-9 (δC 65.0), H2-7′ (δH  
coupled spin system [δH 6.80 and 6.74 (each 1H, br 2.70) and C-9′ (δC 69.9) confirmed assignments of  
s)], an anomeric proton [δH 4.37 (1H, d, J = 8.0 Hz)], C-9 and C-9′ at chemical shift values of δC 65.0 and  
an oxygenated methine group (δH 5.62 (1H, d, J = δC 69.9, respectively. Therefore, in compound 3,  
6.5 Hz)], and two methoxy groups (δH 3.87 and 3.84 upfield movement at carbon chemical shift of C-9  
13  
(each 3H, s)]. The C-NMR spectrum of 2 showed (δC 65.0) demonstrated a hydroxy group at C-9  
signals corresponding to 26 carbon atoms. Among meanwhile downfield movement at carbon chemical  
them, six oxygenated carbons (δC 104.6, 78.3, 78.1, shift of C-9′ (δC 69.9) suggested O-glucopyranosyl  
75.2, 71.7, 62.8) and J value of anomeric proton (δH group at C-9′. The presence of O-glucopyranosyl  
4.37, d, J = 8.0 Hz) were assigned for a β-D- group at C-9′ was also confirmed by HMBC  
glucopyranosyl group. The presence of two methoxy correlations between Glc H-1″ (δH 4.27) and C-9′ (δC  
groups was agreed by two carbon signals at δC 56.8 69.9), H2-9′ (δH 3.55 and 3.94) and Glc C-1″ (δC  
and 56.4. Additionally, three sp3-hybridized carbon 104.5). Carbon chemical shift values at C-7 (δC 89.0)  
atoms [δC 62.2 (C-9′), 32.9 (C-8′), 35.8 (C-7′)] and and C-8 (δC 55.4) indicated 7α,8α relative  
their bearing protons [δH 3.59 (t, J = 6.5 Hz, H2-9′), configurations as shown in compound 2. The  
1.84 (m, H2-8′), 2.64 (t, J = 7.5 Hz, H2-7′), coupling constant (J = 7.5 Hz) observed for the  
1
respectively] suggested the presence of 3- anomeric proton in the H-NMR spectrum indicated  
hydroxypropyl group. The HMBC correlations the β-glucoside linkage of the O-glucose moiety.  
between H2-7′ (δH 2.64) and C-1′ (δC 136.9)/ C-2′ (δC Furthermore, the ESI mass spectrum of 3 exhibited  
114.3)/ C-6′ (δC 118.2) indicated this hydroxypropyl an ion peak at m/z 545 [M+Na]+, corresponding to  
© 2021 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH GmbH www.vjc.wiley-vch.de 150  
Vietnam Journal of Chemistry  
Phan Van Kiem et al.  
the molecular formula of C26H34O11. Therefore, lines, respectively (table 3). Because of cell viability  
compound was determined as (7α,8α)- percentages all over 50 % in the presence of  
3
dihydrodehydrodiconiferyl  
alcohol  
9′-O-β-D- compounds 1-5 (30 µM), further cytotoxic study was  
glucopyranoside.  
not investigated as well as dose-dependent study.  
Compound 4 was isolated as pale-yellow  
amorphous powder. The 1H-NMR and HSQC  
spectra of 4 showed an ABX coupled spin system  
[δH 6.59 (1H, d, J = 8.0 Hz), 6.57 (1H, d, J = 1.5  
Hz), 6.49 (1H, dd, J = 1.5, 8.0 Hz)], an AX coupled  
spin system [δH 6.73 (2H, overlapped, br s)], an  
anomeric proton [δH 4.63 (1H, d, J = 7.5 Hz)], and  
two methoxy groups [δH 3.84 and 3.71 (each 3H, s)].  
Different with 1H-NMR spectra of compounds 2 and  
3, a doublet oxygenated methine signal was not  
Table 3: Cytotoxic activity of 1-5 (30 µM)  
Cell viability (%)  
Compound  
CAL27  
MDA-MB-231  
100.3±0.78  
91.4±1.14  
84.2±0.98  
78.2±0.88  
71.8±0.88  
59.9±0.98  
65.8±1.03  
1
2
3
4
5
77.7±0.81  
97.0±0.93  
91.1±0.81  
1
observed in the H-NMR of 4, suggesting the  
Acknowledgment. This research is funded by  
Graduate University of Science and Technology,  
Vietnam Academy of Science and Technology under  
grant number: GUST.STS.ĐT2019/HH03.  
absence of furan ring. Additionally, carbon signal of  
C-7 (δC 39.2), its bearing protons (δH 2.99 and 2.72),  
HMBC correlations between H-2 (δH 6.57)/H-6 (δH  
6.49) and C-7 indicating oxygenated methine group  
(C-7) in compounds 2-3 was replaced by methylene  
group in compound 4. Carbon chemical shift values  
of C-9 (δC 67.1) and C-9′ (δC 62.2) indicated the  
presence of hydroxy group at C-9 and C-9′,  
respectively. HMBC correlations between H-2′ / H-  
6′ (δH 6.73)/Glc H-1″ (δH 4.63) and C-4′ (δC 143.6)  
indicated that O-glucopyranosyl group connect to C-  
4′. The sugar linkage must be in the β-form indicated  
by glc JH-1/H-2 = 7.5 Hz. Furthermore, the ESI mass  
spectrum of 4 exhibited an ion peak at m/z 547  
[M+Na]+, corresponding to the molecular formula of  
C26H36O11. Thus, compound 4 was determined to be  
icariside E3 as previously reported by Sadhu and co-  
authors (table 2).[11]  
REFERENCES  
1. V. V. Chi. Dictionary of Vietnamese Medicinal  
Plants, Hanoi: Medicine Publishing House, Vol. 1.p.  
191, 2012.  
2. C. M. Wilmot-Dear, I. Friis. The Old World species  
of Pouzolzia (Urticaceae, tribus Boehmerieae). A  
taxonomic revision, Nord. J. Bot., 2004, 24, 5-111.  
3. S. Chanyapat, J. Weena, U. Yaowalak, K. Tanawan.  
Antiproliferative effect and the isolated compounds  
of Pouzolzia indica. Evid-based Complement.  
Alternat. Med., 2013, Article ID 342352.  
4. Z. H. Chen, H. Zhang, S. H. Tao, Z. Luo, C. Q.  
Zhong, L. B. Guo. Norlignans from Pouzolzia  
Zeylanica var. Microphylla and their nitric oxide  
inhibitory activity, J. Asian Nat. Prod. Res., 2015, 17,  
959-966.  
1
The H- and 13C-NMR spectra of compound 5  
were similar with compound  
4
except the  
appearance of vinyl group (-CH=CH-) instead of  
ethylene group (-CH2-CH2-). The presence of vinyl  
group at C-7′/C-8′ was also agreed with doublet  
signals of methylene proton H2-9′. Furthermore,  
value of J coupling constant between H-7′ and H-8′  
(J = 15.5 Hz) indicated geometric configuration of  
double bond at C-7′/C-8′ to be E-configuration.  
Furthermore, the ESI mass spectrum of 5 exhibited  
an ion peak at m/z 545 [M+Na]+, corresponding to  
the molecular formula of C26H34O11. Consequently,  
compound 5 was determined to be icariside E5 as  
previously reported by Lee and co-authors (table  
Compounds 1-5 were evaluated their cytotoxic  
effects on CAL27 and MDA-MB-231 cells using  
MTT assay.[13] At concentration of 30 µM,  
compounds 1-5 exhibited weak cytotoxic activity  
with cell viability percentages ranging from  
59.9±0.98 % to 84.2±0.98 % and from 77.7±0.81 %  
to 100.3±0.78 % on CAL27 and MDA-MB-321 cell  
5. D. Maiti, A. K. Singha, C. Sarkar, S. Sarkar, I. Sil  
Sarma, K. Manna, B. Dinda. Friedelane, isolated  
from Pouzolzia indica Gaud. exhibits toxic effect  
against melanoma, Cytotechnology, 2018, 70, 1111-  
1120.  
6. L. T. H. Nhung, P. T. M. Huong, N. T. Anh, B. H.  
Tai, N. X. Nhiem, V. V. Doan, N. H. Hoang, Y. Seo,  
S. H. Kim, P. V. Kiem, Two new norlignans from the  
aerial parts of Pouzolzia sanguinea (Blume) Merr.,  
Nat.  
Prod.  
Res.,  
2020,  
1-8.  
DOI:  
10.1080/14786419.2020.1771707.  
7. L. Xiong, C. Zhu, Y. Li, Y. Tian, S. Lin, S. Yuan, J.  
Hu, Q. Hou, N. Chen, Y. Yang, J. Shi. Lignans and  
neolignans from Sinocalamus affinis and their  
absolute configurations, J. Nat. Prod., 2011, 74,  
1188-1200.  
8. S. Y. Lee, W. S. Suh, J. M. Cha, E. Moon, S. K. Ha,  
S. Y. Kim, K. R. Lee. Anti-neuroinflammatory  
constituents from Sinomenium acutum rhizomes,  
© 2021 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH GmbH www.vjc.wiley-vch.de 151  
             
Vietnam Journal of Chemistry  
Isolation of lignans and neolignans from…  
Phytochem. Lett., 2016, 17, 79-84.  
the fruits of the red pepper (Capsicum annuum L.)  
and their antioxidant effects, Arch. Pharm. Res.,  
2009, 32, 1345-1349.  
9. S. Lee, I. H. Song, J. H. Lee, W. Y. Yang, K. B. Oh,  
J. Shin. Sortase A inhibitory metabolites from the  
roots of Pulsatilla koreana, Bioorg. Med. Chem. 13. T. Mosmann. Rapid colorimetric assay for cellular  
Lett., 2014, 24, 44-48.  
growth and survival: Application to proliferation and  
cytotoxicity assays, J. Immunol. Methods, 1983, 65,  
55-63.  
10. C. Wang Z. Jia. Lignan, phenylpropanoid and iridoid  
glycosides from Pedicularis torta, Phytochemistry,  
1997, 45, 159-166.  
14. P. V. Kiem, D. T. H. Yen, N. V. Hung, N. X. Nhiem,  
B. H. Tai, D. T. Trang, P. H. Yen, T. M. Ngoc, C. V.  
Minh, S. J. Park, J. H. Lee, S. Y. Kim, S. H. Kim.  
Five new pregnane glycosides from Gymnema  
sylvestre and their α-glucosidase and α-amylase  
inhibitory activities, Molecules, 2020, 25, 2525. DOI:  
10.3390/molecules25112525.  
11. S. K. Sadhu, A. Khatun, P. Phattanawasin, T.  
Ohtsuki, M. Ishibashi. Lignan glycosides and  
flavonoids from Saraca asoca with antioxidant  
activity, J. Nat. Med., 2007, 61, 480-482.  
12. D. Y. Lee, D. G. Lee, J. G. Cho, M. H. Bang, H. N.  
Lyu, Y. H. Lee, S. Y. Kim, N. I. Baek. Lignans from  
Corresponding author: Phan Van Kiem  
Institute of Marine Biochemistry  
Vietnam Academy of Science and Technology  
18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam  
© 2021 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH GmbH www.vjc.wiley-vch.de 152  
         
pdf 7 trang yennguyen 18/04/2022 1700
Bạn đang xem tài liệu "Isolation of lignans and neolignans from Pouzolzia sanguinea with their cytotoxic activity", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

File đính kèm:

  • pdfisolation_of_lignans_and_neolignans_from_pouzolzia_sanguinea.pdf