Study on elastic deformation of substitution alloy AB with interstitial atom C and BCC structure under pressure

TẠP CHÍ KHOA HỌC SỐ 20/2017  
55  
STUDY ON ELASTIC DEFORMATION OF SUBSTITUTION  
ALLOY AB WITH INTERSTITIAL ATOM C AND BCC STRUCTURE  
UNDER PRESSURE  
Nguyen Quang Hoc1, Nguyen Thi Hoa2 and Nguyen Duc Hien3  
1Hanoi National University of Education  
2University of Transport and Communication  
3Mac Dinh Chi High School  
Abstract: The analytic expressions of the free energy, the mean nearest neighbor distance  
between two atoms, the elastic moduli such as the Young modulus E, the bulk modulus K,  
the rigidity modulus G and the elastic constants C11, C12, C44 for substitution alloy AB  
with interstitial atom C and BCC structure under pressure are derived from the statistical  
moment method. The elastic deformations of main metal A, substitution alloy AB and  
interstitial alloy AC are special cases of elastic deformation for alloy ABC. The theoretical  
results are applied to alloy FeCrSi. The numerical results for alloy FeCrSi are compared  
with the numerical results for main metal Fe, substitution alloy FeCr, interstitial alloy FeSi  
and experiments.  
Keywords: Substitution and interstitial alloy, elastic deformation, Young modulus, bulk  
modulus, rigidity modulus, elastic constant, Poisson ratio.  
Email: hoanguyen1974@gmail.com  
Received 02 December 2017  
Accepted for publication 25 December 2017  
1. INTRODUCTION  
Thermodynamic and elastic properties of interstitial alloys are specially interested by  
many theoretical and experimental researchers [1-7, 10, 12, 13].  
In this paper, we build the theory of elastic deformation for substitution alloy AB with  
interstitial atom C and body-centered cubic (BCC) structure under pressure by the statistical  
moment method (SMM) [8-10].  
56  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ HÀ NỘI  
2. CONTENT OF RESEARCH  
2.1. Analytic results  
In interstitial alloy AC with BCC structure, the cohesive energy of the atom C (in face  
centers of cubic unit cell) with the atoms A (in body center and peaks of cubic unit cell) in  
the approximation of three coordination spheres with the center C and the radii r ,r 2,r 5  
1
1
1
is determined by [8-10].  
ni  
1
2
1
2
u
r
2r 4  
r
2 8  
r
1
5
AC    
   
0C  
i
AC  
1
AC  
1
AC  
i1  
r 2  
r
2 4  
r
1
5 ,  
(2.1)  
   
AC  
1
AC  
1
AC  
n
where  
is the interaction potential between the atom A and the atom C, is the number  
AC  
i
th  
r(i 1,2,3),  
of atoms on the i coordination sphere with the radius  
r º r r y0 A (T) is  
i
1
1C  
01C  
1
the nearest neighbor distance between the interstitial atom C and the metallic atom A at  
r
temperature T,  
is the nearest neighbor distance between the interstitial atom C and the  
01C  
metallic atom A at 0K and is determined from the minimum condition of the cohesive energy  
u0C  
, y0 A (T ) is the displacement of the atom A1(the atom A stays in the body center of cubic  
1
unit cell) from equilibrium position at temperature T. The alloy’s parameters for the atom C  
in the approximation of three coordination spheres have the form [8-10].  
2
1
AC  
2
16  
(2)  
AC  
(1)  
AC  
(1)  
AC  
4 2C  
,
kC   
r   
   
r 2   
r 5 ,  
2   
C
1C  
1
1
1
ui2  
r
1
5 5r  
i
eq  
1
4
  
ui4  
1
1
2
1
4 5  
1   
(4)  
(2)  
(1)  
(4)  
(3)  
AC  
1C  
(r )   
(r 2)   
(r )   
(r 2)   
(r 5),  
AC  
1
AC  
1
AC  
1
AC  
1
AC  
1
48  
24  
8r2  
16r3  
150  
125r  
1
i
eq  
1
1
6
4AC  
1
1
5
2
(3)  
AC  
(2)  
AC  
(1)  
AC  
(3)  
AC  
2C  
(r )  
(r )   
(r )   
(r 2)  
1
48   
1
1
1
ui2ui2  
4r  
4r2  
8r3  
8r  
1
i
1
1
1
eq  
1
2
25  
3
2
3
(2)  
(4)  
AC  
(3)  
(2)  
(1)  
AC  
(r 2)(r 5)  
(r 5)  
(r 5)  
(r 5),  
AC 1C  
1
AC  
1
AC  
1
1
8r2  
25r2  
25r 5  
25r3 5  
1
1
1
1
(2.2)  
where(i) (r )  2AC (r ) / r2 (i 1,2,3,4),, x, y, z,and uiis the displacement  
AC  
i
i
i
of the ith atom in the direction .  
TẠP CHÍ KHOA HỌC SỐ 20/2017  
57  
The cohesive energy of the atom A1 (which contains the interstitial atom C on the first  
coordination sphere) with the atoms in crystalline lattice and the corresponding alloy’s  
parameters in the approximation of three coordination spheres with the center A1 is  
determined by [8-10]  
u0A u0A AC  
r
,
1A  
1
1
2
AC  
1
5
(2)  
AC 1A  
(1)  
AC 1A  
2   
kA kA   
kA   
r
r
,4 2 A  
,
A
1A  
1
ui2  
2r  
1
1
1
1
1
i
1A  
eq  
1
rr  
1A  
1
4
AC  
1
1
24  
1
1
(4)  
AC 1A  
(2)  
AC 1A  
(1)  
AC 1A  
1A 1A   
1A (r )  
(r )  
(r ),  
48   
ui4  
8r2  
8r3  
1
1
1
1
i
1A  
1A  
1
eq  
1
rr  
1A  
1
4AC  
ui2ui2  
1
3
4r2  
1A  
1
3
6
(3)  
AC 1A  
(2)  
AC 1A  
(1)  
AC 1A  
2A 2 A  
2 A   
(r )   
(r )   
(r )  
  
4r3  
1
1
1
1
48  
2r  
i
1A  
1A  
eq  
1
1
rr  
1A  
1
(2.3)  
where r r is the nearest neighbor distance between the atom A1and atoms in crystalline  
1A  
1C  
1
lattice.  
The cohesive energy of the atom A2 (which contains the interstitial atom C on the first  
coordination sphere) with the atoms in crystalline lattice and the corresponding alloy’s  
parameters in the approximation of three coordination spheres with the center A2 is  
determined by [8-10].  
u0A u0A AC  
r
,
1A2  
2
2
  
1
4
r
1A  
2
(2)  
AC 1A  
(1)  
AC 1A  
kA kA   
kA 2  
r
r
,4 2A  
,
AC   
2   
A
1A  
2
u2  
2
2
2
2
2
i
i  
eq  
rr  
1A  
2
4
1
  
1
24  
1
1
1
(4)  
AC 1A  
(3)  
AC 1A  
(2)  
AC 1A  
(1)  
AC 1A  
1A 1A   
1A (r )  
(r )  
(r )  
(r ),  
AC   
48  
u4  
4r  
8r2  
8r3  
1A  
2
2
2
2
2
2
i
i  
1A  
1A  
eq  
2
2
rr  
1A  
2
6
4AC  
1
1
3
3
(4)  
AC 1A  
(3)  
AC 1A  
(2)  
AC 1A  
(1)  
AC 1A  
2A 2A   
2A (r )  
(r )  
(r )  
(r )  
48u2 u2  
8r2  
8r3  
2
2
2
2
2
8
4r  
1A  
2
i
i  
i  
1A  
1A  
eq  
2
2
rr  
1A  
2
(2.4)  
58  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ HÀ NỘI  
where r r y0C (T),r isthe nearest neighbor distance between the atom A2 and  
1A  
01A  
01A  
2
2
2
atoms in crystalline lattice at 0K and is determined from the minimum condition of the  
cohesive energy u0 A , y0C (T) is the displacement of the atom C at temperature T.  
2
u0A,kA,1A,2A  
In Eqs. (2.3) and (2.4),  
are the coressponding quantities in clean metal  
A in the approximation of two coordination sphere [8-10]  
The equation of state for interstitial alloy AC with BCC structure at temperature T and  
pressure P is written in the form  
1 u0  
1 k  
Pv  r  
xcth x  
.
(2.5)  
1   
6 r  
2k r  
1
1
At 0K and pressure P, this equation has the form  
u0 0 k  
Pv  r  
.
(2.6)  
1   
r  
4k r  
1
1
,  
If knowing the form of interaction potential  
eq. (2.6) permits us to determine the  
i0  
nearest neighbor distance r P,0 X C, A, A , A at 0K and pressure P. After knowing  
 2   
1X  
1
r
1X   
P,0 , we can determine alloy parametrs k (P,0),(P,0),(P,0),(P,0) at 0K  
X
1X  
2X  
X
and pressure P. After that, we can calculate the displacements [8-10].  
2X (P,0)2  
y0X (P,T)  
AX (P,T)  
X  
,
3kX3 (P,0)  
i  
5
   
YX  
X
A a   
aiX ,kX mX2 , xX   
,a 1   
,
(2.7)  
  
X
1X  
1X  
2
k
2  
2
i2  
X
With aiX (i 1,2..., 5) are the values of parameters of crystal depending on the structure  
of crystal lattice [10].  
From that, we derive the nearest neighbor distance r P,T at temperature T and  
1X   
pressure P:  
r (P,T) r (P,0) yA (P,T), r (P,T) r (P,0) yA (P,T),  
1C  
1C  
1A  
1A  
1
r (P,T) r (P,T), r (P,T) r (P,0) yC (P,T).  
(2.8)  
1A  
1C  
1A2  
1A2  
1
Then, we calculate the mean nearest neighbor distance in interstitial alloy AC by the  
expressions as follows [8-10].  
TẠP CHÍ KHOA HỌC SỐ 20/2017  
59  
C 1A  
r (P,T) r (P,0) y(P,T ), r (P,0) 1c r (P,0) c r (P,0),  
C   
1A  
1A  
1A  
1A  
r (P,0) 3r (P,0), y(P,T) 17c y (P,T) c y (P,T) 2c y (P,T) 4c y (P,T),  
C   
1A  
1C  
A
C
C
C
A
C
A2  
1
(2.9)  
where r (P,T) is the mean nearest neighbor distance between atoms A in interstitial alloy  
1A  
AC at pressure P and temperature T, r (P,0) is the mean nearest neighbor distance between  
1A  
r (P,0)  
atoms A in interstitial alloy AC at pressure P and 0K,  
is the nearest neighbor  
1A  
r (P,0)  
distance between atoms A in clean metal A at pressure P and 0K,  
is the nearest  
1A  
neighbor distance between atoms A in the zone containing the interstitial atom C at pressure  
P and 0K and cC is the concentration of interstitial atoms C.  
In alloy ABC with BCC structure (interstitial alloy AC with atoms A in peaks and body  
center, interstitial atom C in facer centers and then, atom B substitutes atom A in body  
center), the mean nearest neighbor distance between atoms A at pressure P and temperature  
T is determined by:  
BTAC  
BT  
BTB  
BT  
aABC (P,T,cB ,cC ) cAC aAC  
cBaB  
, BT cAC BTAC cB BTB ,  
1
1
cAC cA cC ,aAC r (P,T), BTAC  
, BTB   
,
1A  
TAC  
TB  
3  
aAC (P, T,cC )  
a0 AC (P, 0,cC )  
TAC (P, T,cC )   
,
2
3
1
AC  
2P   
4aAC (P, T,cC ) 3N aA2C  
T  
2
2
2
2
2
2AC  
  
  
A  
A  
  
1
2
17c  
C   
cC  
2c  
4c  
,
C   
C   
AC   
A   
C   
2
a2  
a2  
a2  
aA  
aA  
2
2
T  
T  
T  
r (P,T)  
T  
AC  
A
C
T  
T  
1
2
1A  
2
1 2u0 X X kX  
1
kX  
2
2
1
 X  
,a º r (P,T).  
(2.10)  
X
1X  
3N aX2  
6 aX2  
4kX aX2 2kX a  
T  
X
The mean nearest neighbor distance between atoms A in alloy ABC at pressure P and  
temperature T is determined by:  
B0TAC  
B0T  
B0TB  
B0T  
a0 ABC (P, T,cB ,cC ) cACa0 AC  
cBa0B  
.
(2.11)  
60  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ HÀ NỘI  
c  c  c  
The free energy of alloy ABC with BCC structure and the condition  
has  
C
B
A
the form:  
ABC AC c TS AC TScABC  
B A   
,
B
c
AC 17c c 2c 4c TScAC  
,
C   
A
C
C
C
A
C
A2  
1
2
  
21X  
3
XX  
X U0X 0X 3N  
2X XX2   
1  
kX2  
2
23 4  
XX  
XX  
22X XX 1  
2 2 2   
1  
1X  
,
X   
2X   
1X  
1X  
kX4  
3
2
2
2xX  
0X 3NxX ln(1e  
) , X X º xX coth xX .  
(2.12)  
is the free energy of interstitial alloy AC, ScAC  
AC  
where  
is the free energy of atom X,  
X
is the configuration entropy of interstitial alloy AC and ScABC is the configuration entropy  
of alloy ABC.  
The Young modulus of alloy ABC with BCC structure at temperature T and pressure P  
is determined by:  
EABC c E E E c E c E c c E E E c c E E ,  
B   
A   
B   
B   
B
AC  
B
B
A
A
A
A
AC  
AB  
A
A
AC  
2A  
2A  
2C  
2  
1
2
2  
4  
2  
2  
1
E c E c E ,  
E   
,
EAC E 17cC cC  
,
AB  
A
A
B
B
A
A   
2A  
2  
.r A  
1A 1A  
2A22  
1
A  
2  
1
A   
1  
1xActhx 1x cthx , xA   
,
A   
1A  
A
A   
kA  
kA4  
2
2  
2
2
2X  
2  
1 U  
3 X kX  
1
kX  
4r2  
0X  
01X  
2 r2  
4 kX r2  
2kX r  
1X  
1X  
1X  
1 U0X  
3
1 kX  
X  
2  
kX  
X cthxX  
2r01X , xX   
,X   
,
(2.13)  
2 r  
2
2kX r  
m
1X  
1X  
where is the relative deformation, EABC EABC (cB ,cC , P,T), EAB EAB c , P,T is the  
B
Young modulus of substitution alloy AB and EAC EAC c , P,T is the Young modulus of  
C
interstitial alloy AC.  
TẠP CHÍ KHOA HỌC SỐ 20/2017  
61  
The bulk modulus of alloy ABC with BCC structure at temperature T and pressure P  
has the form:  
EAB c , c , P,T  
.
B
C
KABC c , c , P,T  
(2.14)  
B
C
3(12)  
A
The rigidity modulus of alloy ABC with BCC structure at temperature T and pressure P  
has the form:  
EABC c , c , P,T  
B
C
GABC c , c , P,T   
.
(2.15)  
B
C
2 1  
A
The elastic constants of alloy ABC with BCC structure at temperature T and pressure P  
has the form:  
EABC c , c P,T 1  
  
B
C
A
C11ABC c , c , P,T  
,
(2.16)  
(2.17)  
(2.18)  
B
C
1  
12  
  
A
A
EABC c , c , P,T   
B
C
A
C12 ABC c , c , P,T  
,
B
C
1  
12  
  
A
A
EABC c , c , P,T  
B
C
C44 ABC c , c , P,T  
.
B
C
2 1  
A
The Poisson ratio of alloy ABC with BCC structure has the form:  
ABC cAA cBB cCC cAA cBB AB.  
(2.19)  
,  
respectively are the Poisson ratioes of materials A, B and C and are  
where  
and  
A
B
C
determined from the experimental data.  
When the concentration of interstitial atom C is equal to zero, the obtained results for  
alloy ABC become the coresponding results for substitution alloy AB. When the  
concentration of substitution atom B is equal to zero, the obtained results for alloy ABC  
become the coresponding results for interstitial alloy AC. When the concentrations of  
substitution atoms B and interstitial atoms C are equal to zero, the obtained results for alloy  
ABC become the coresponding results for main metal A.  
2.2. Numerical results for alloy FeCrSi  
For alloy FeCrSi, we use the n-m pair potential  
62  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ HÀ NỘI  
m   
D
r
r
n  
0
0   
(2.20)  
(r)   
m
n  
,
n m  
r
r
where the potential parameters are given in Table 1 [11].  
Table 1. Potential parameters m, n, D, r0 of materials  
16  
10  
Material  
m
n
D 10 erg  
m
r 10  
0
Fe  
Cr  
Si  
7.0  
6.0  
6.0  
11.5  
15.5  
12.0  
6416.448  
6612.96  
2.4775  
2.4950  
2.2950  
45128.24  
Considering the interaction between atoms Fe and Si in interstitial alloy FeSi, we use  
the potential (2.20) but we take approximately  
Therefore,  
D DFe DSi , r r0Fer0Si .  
0
m   
D
r
r
n  
0   
0   
(2.21)  
Fe-Si (r)   
m
n  
,
n m  
r
r
where  
FeSi are taken as in Table 2 [10].  
Table 2. Potential parameters  
m n  
and are determined empirically. The potential parameters for interstitial alloy  
r
m n  
, , 0 , D of alloy FeSi  
16  
10  
m
n
Alloy  
D 10 erg  
m
r 10  
0
FeSi  
2.0  
5.5  
17016.5698  
2.3845  
According to our numerical results as shown in figures from Figure 1 to Figure 6 for  
alloy FeCrSi at the same pressure, temperature and concentration of substitutrion atoms  
when the concentration of interstitial atoms increases, the mean nearest neighbor distance  
also increases. For example, for alloy FeCrSi at the same temperature, concentration of  
substitution atoms and concentration of interstitial atoms when pressure increases, the mean  
nearest neighbor distance descreases. For example for alloy FeCrSi at T = 300K, cCr = 10%,  
cSi = 3% when P increases fro 0 to 70 GPa, r1 descreases from 2.4715A0 to 2.3683A0.  
For alloy FeCrSi at the same pressure, temperature and concentration of interstitial  
atoms when the concentration of substitution atoms increases, the mean nearest neighbor  
distance descreases. For example for alloy FeCrSi at T = 300K, P = 50 GPa, CSi = 5% when  
CCr increases from 0 to 15%r1 desceases from 2.4216 A0to 2.4178A0.  
For alloy FeCrSi at the same pressure, concentration of substitution atoms and  
concentration of interstitial atoms when temperature increases, the mean nearest neighbor  
TẠP CHÍ KHOA HỌC SỐ 20/2017  
63  
distance increases. For example for alloy FeCrSi at P = 0, CCr = 10% và CSi = 3% when T  
increases from 50K to 1000K, r1 increases from 2.4687A0 to 2.4801A0.  
For alloy FeCrSi at the same pressure, temperature and concentration of substitutrion  
atoms when the concentration of interstitial atoms increases, the elastic moduli E, G, K  
increases. For example for alloy FeCrSi at T = 300K, P = 10GPa and CCr = 10% when CSi  
increases from 0 to 5%, E increases from 18.4723.1010 Pa to 30.0379.1010Pa.  
For alloy FeCrSi at the same temperature, concentration of substitution atoms and  
concentration of interstitial atoms when pressure increases, the elastic moduli E, G, K  
increases. For example for alloy FeCrSi at T = 300K, CCr = 10%, CSi = 1% when P inceases  
from 0 to 70GPa, E inceases from 15.2862.1010Pa to 48.0400.1010Pa.  
For alloy FeCrSi at the same pressure, temperature and concentration of interstitial  
atoms when the concentration of substitution atoms increases, the elastic moduli E, G, K  
desceases. For example for alloy FeCrSi at T = 300K, P = 30GPa, CSi = 5% when CCr tăng  
từ 0 đến 15%, E desceases from 39.38931010 Pa to 39.2128.1010Pa.  
For alloy FeCrSi at the same pressure, temperature and concentration of substitutrion  
atoms when the concentration of interstitial atoms increases, the elastic constants  
C11 , C12  
,C44 increases. For example for alloy FeCrSi at T = 300K, P = 10GPa, CCr = 10% when CSi  
inceases from 0 to 5%,  
increases from 23.7286.1010 Pa to 38.5851.1010 Pa.  
C11  
For alloy FeCrSi at the same temperature, concentration of substitution atoms and  
concentration of interstitial atoms when pressure increases, the elastic constants  
C11 , C12  
,C44 increases. For example for alloy FeCrSi at T = 300K, CCr = 10%, CSi = 1% when P  
increases from 0 to70GPa,  
increases from 14.6358.1010 Pa to 61.7096.1010 Pa.  
C11  
For alloy FeCrSi at the same pressure, temperature and concentration of interstitial  
atoms when the concentration of substitution atoms increases, the elastic constants  
C11 , C12  
,C44 descreases. For example for alloy FeCrSi at T = 300K, P = 30GPa, CSi = 5% when CCr  
increases from 0 to 15%  
desceases from 51.6175.1010 Pa to 49.8943.1010 Pa.  
C11  
When the concentration of substitution atoms and the concentration of interstitial atoms  
are equal to zero, the mean nearest neighbor distance, the elastic moduli and the elastic  
constants of alloy FeCrSi becomes the mean nearest neighbor distance, the elastic moduli  
and the elastic constants of metal Fe. The dependence of mean nearest neighbor distance,  
the elastic moduli and the elastic constants on pressure and concentration of interstitial atoms  
for alloy FeCrSi is the same as the dependence of mean nearest neighbor distance, the elastic  
moduli and the elastic constants on pressure and concentration of interstitial atoms for  
interstitial alloy FeSi. The dependence of mean nearest neighbor distance, the elastic moduli  
and the elastic constants on pressure and concentration of substitution atoms for alloy  
64  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ HÀ NỘI  
FeCrSi is the same as the dependence of mean nearest neighbor distance, the elastic moduli  
and the elastic constants on pressure and concentration of substitution atoms for substitution  
alloy FeCr.  
Table 3 gives the nearest neighbor distance and the elastic moduli of Fe at T = 300K,  
P = 0 according to the SMM and the experimental data [12, 13].  
3. CONCLUSION  
The analytic expressions of the free energy, the mean nearest neighbor distance between  
two atoms, the elastic moduli such as the Young modulus, the bulk modulus, the rigidity  
modulus and the elastic constants depending on temperature, concentration of substitution  
atoms and concentration of interstitial atoms for substitution alloy AB with interstitial atom  
C and BCC structure under pressure are derived by the SMM. The numerical results for alloy  
FeCrSi are in good agreement with the numerical results for substitution alloy FeCr,  
interstitial alloy FeSi and main metal Fe. Temperature changes from 5 to 1000K, pressure  
changes from 0 to 70 GPa, the concentration of substitution atoms Cr changes from 0 to 15%  
and the concentration of interstitial atoms Si changes from 0 to 5%.  
Table 3. Nearest neighbor distance and elastic moduli E, G of Fe at P = 0, T = 300K  
according to SMM and EXPT [12, 13]  
E 1010 Pa  
G 1010 Pa  
a(A0 )  
Method  
SMM  
EXPT  
2.4298  
20.83  
8.27  
2.74[12]  
20.98[13]  
8.12[13]  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
70  
E
G
K
C11  
C12  
C44  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
p (GPa)  
p (GPa)  
Figure 1. Dependence of elastic moduli E, G,  
K (1010Pa) on pressure for alloy  
Figure 2. Dependence of elastic constants  
C11, C12, C44(1010Pa) on pressure for alloy  
Fe-10%Cr-5%Si at T = 300K  
Fe-10%Cr-5%Si at T = 300K  
TẠP CHÍ KHOA HỌC SỐ 20/2017  
65  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
40  
E
G
K
C11  
C12  
C44  
35  
30  
25  
20  
15  
10  
0
1
2
3
4
5
0
1
2
3
4
5
Nong do Si (%)  
Nong do Si (%)  
Figure 3. Dependence of elastic moduli E, G,  
K (1010Pa) on concentration of Si for alloy  
Fe-10%Cr-xSi at P = 30GPa and T = 300K  
Figure 4. Dependence of elastic constants  
C11, C12, C44 (1010Pa) on concentration of Si  
for alloy Fe-10%Cr-xSi at P = 30GPa and  
T = 300K  
50  
60  
C11  
C12  
C44  
E
G
K
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
45  
40  
35  
30  
25  
20  
15  
10  
0
5
10  
15  
0
5
10  
15  
Nong do Cr(%)  
Nong do Cr(%)  
Figure 5. Dependence of elastic moduli E, G,  
K (1010Pa) on concentration of Cr for alloy  
Fe-xCr-5%Si at P = 30GPa and T = 300K  
Figure 6. Dependence of elastic constants  
C11, C12, C44 (1010Pa) on concentration of Cr  
for alloy Fe-xCr-5%Si at P = 30GPa and  
T = 300K  
REFERENCES  
1. K. E. Mironov (1967), Interstitial alloy. Plenum Press, New York.  
2. A. A. Smirnov (1979), Theory of Interstitial Alloys, Nauka, Moscow, Russian.  
3. A. G. Morachevskii and I. V. Sladkov (1993), Thermodynamic Calculations in Metallurgy,  
Metallurgiya, Moscow, Russian.  
4. V.V.Heychenko, A.A.Smirnov (1974), Reine und angewandteMetallkunde in  
Einzeldarstellungen 24, pp.80-112.  
5. V. A. Volkov, G. S. Masharov and S. I. Masharov (2006), Rus. Phys. J., No.10, 1084 .  
6. S. E. Andryushechkin, M. G. Karpman (1999), Metal Science and Heat Treatment 41, 2 80.  
66  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ HÀ NỘI  
7. M.Hirabayashi, S.Yamaguchi, H.Asano, K.Hiraga (1974), Reine und angewandteMetallkunde  
in Einzeldarstellungen 24, p.266.  
8. N. Tang , V. V. Hung, Phys. Stat. Sol. (b)149(1988), p.511; 161(1990), p.165; 162 (1990)371;  
162(1990), p.379.  
9. V. V. Hung (2009), Statistical moment method in studying thwermodynamic and elastic  
property of crystal, HNUE Publishing House.  
10. N.Q.Hoc, D.Q.Vinh, B.D.Tinh, T.T.C.Loan, N.L.Phuong, T.T.Hue, D.T.T.Thuy (2015),  
Thermodynamic properties of binary interstitial alloys with a BCC structure: dependence on  
temperature and concentration of interstitial atoms, Journal of Science of HNUE, Math. and  
Phys. Sci. 60, 7, pp.146-155.  
11. M.N.Magomedov (1987), J. Fiz. Khimic 611003,(in Russian).  
12. D.R.Lide (2005), CRC Handbook oì Chemistry and Physics, 86th Ed., Taylor & Francis, Boca  
Raton London, New York, Singapore.  
13. L.V.Tikhonov et al (1986), Mechanical properties of metals and alloys, Kiev.  
NGHIÊN CỨU BIẾN DẠNG ĐÀN HỒI CỦA HỢP KIM THAY THẾ  
AB CẤU TRÚC LẬP PHƯƠNG TÂM KHỐI CÓ NGUYÊN TỬ C  
XEN KẼ DƯỚI TÁC DỤNG CỦA ÁP SUẤT  
Tóm tắt: Áp dụng phương pháp thống kê mô men vào nghiên cứu biến dạng đàn hồi của  
hợp kim thay thế AB cấu trúc lập phương tâm khối có nguyên tử C xen kẽ, chúng tôi thu  
được các biểu thức giải tích cho phép xác định các đại lượng: năng lượng tự do, khoảng  
lân cận gần nhất giữa hai nguyên tử, mô đun Young E, mô đun khối K, mô đun trượt G và  
các hằng số đàn hồi của các hợp kim này dưới tác dụng của áp suất. Các kết quả lý thuyết  
được áp dụng tính số với hợp kimFeCrSi. Trong trường hợp giới hạn, các kết quả tính số  
được so sánh với các số liệu thực nghiệm của kim loại Fe, hợp kim thay thế FeCr và hợp  
kim xen kẽ FeSi.  
Từ khóa: Hợp kim thay thế, hợp kim xen kẽ, biến dạng đàn hồi, mô đun Young, mô đun  
khối, mô đun trượt, hằng số đàn hồi, hệ số Poisson.  
pdf 12 trang yennguyen 18/04/2022 1200
Bạn đang xem tài liệu "Study on elastic deformation of substitution alloy AB with interstitial atom C and BCC structure under pressure", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

File đính kèm:

  • pdfstudy_on_elastic_deformation_of_substitution_alloy_ab_with_i.pdf