Using the finite - time disturbance observer (FTO) for robotic manipulator almega 16

KHOA HỌC   
  CÔNG NGHỆ  
 P-ISSN 1859-3585      E-ISSN 2615-9619  
 
 
USING THE FINITE - TIME DISTURBANCE OBSERVER (FTO)  
FOR ROBOTIC MANIPULATOR ALMEGA 16  
DÙNG BỘ QUAN SÁT NHIỄU VỚI THỜI GIAN HỮU HẠN CHO TAY MÁY ROBOT ALMEGA 16  
Vo Thu Ha   
 
machine  not  to  stick  exactly  to  the  given  trajectory.To  
know the exact external noise components, it is necessary  
to  incorporate  a  noise  observation  device  (DOB)  to  
estimate these disturbances. When applying the DOB noise  
monitor in the mechanical hand movement system, control  
can  be  based  on  the  noise  monitor  [1-3],  estimate  and  
compensate the friction component [4,5], control force or  
tissue.  non-sensor  torque  [6-8],  error  diagnosis  and  
isolation (FDI) [9-11]. The DOB turbulence monitor has been  
widely used in hand machine motion control for a variety of  
purposes. The basic idea of DOB is to use the motion state  
variables of the robot and the torque of the joints as input  
values  and  then  estimate  all  the  unknown  internal  and  
external  torque.  In  [5],  the  Nonlinear  Noise  Observer  
(NDOB) was established to estimate the friction component  
so  that  accurate  real  friction  component  values  can  be  
known  with  fast  time.  The  NDOB  is  done  by  choosing  a  
certain nonlinear function. But the downside of the NDOB  
is  that  choosing  such  a  nonlinear  function  is  not  
straightforward.  In  [9],  the  use  of  the  generalized  
momentum observer (GMO) has the advantage of not only  
avoiding  acceleration  calculations  to  reduce  the  effect  of  
noise in site measurements, but also creating disturbance  
observations at superlative form. GMOs are able to realize  
FDI such as predicting random effects as well as saturation  
actuator error. The GMO Observer is easy to implement and  
has reliable results and the GMO has become a popular and  
widely used method in many hand-operated applications.  
However, the downside of GMOs is that the failure to return  
diagnostic results and slow response isolation (FDI) results  
in reduced sensitivity and response speed when the GMO is  
used in the case of collision detection. In [10] there was a  
solution for the GMO set, by treating the collision detection  
case  as  an  extrinsic  perturbation.  Although  many  DOB  
observers  have  been  developed  and  used  for  mechanical  
hand movement systems [5,9,10,13,14]. However, this DOB  
observer shows that the asymptotic convergence rate and  
the estimated  bias of  the perturbations will not converge  
quickly to zero. So for the conventional DOB convergence  
rate  is  is  best  exponentially  while  the  FTO  can  achieve  a  
faster  convergence  rate  with  convergence  in  finite  time.  
Given  their  finite  time  characteristics,  a  number  of  FTOs  
have been designed and applied to different systems with  
ABSTRACT  
This paper presents build a finite time observator (FTO) and applies it to the  
Almega16 robot motion system. The main content of the article is to design a  
FTO so that the observation of the external noise of the Almega16 robot motion  
system will converge to the desired true value over a period of time. finite, is  
done by estimating the external noise quantities and then feeding them into the  
available Robot controller. The advantage when applying the FTO disturbance  
monitor is that it is possible to eliminate the inverse inertia matrix component in  
the dynamic equation. The results achieved showed that the Almega16 robot  
movement system ensures that the errors of the rotating joints quickly reach  
zero with a small transition time, making the closed system stable according to  
Lyapunov standards.  
Keywords: Robot Almega 16, Finite - time observer, Lyapunov standards.    
TÓM TẮT   
Bài báo trình bày xây dựng bộ quan sát nhiễu với thời gian hữu hạn (FTO) và  
ứng dụng cho hệ chuyển động Robot Almega16. Nội dung chính bài báo là thiết  
kế bộ quan sát nhiễu với thời gian hữu hạn (FTO) sao cho việc quan sát các nhiễu  
ngoại của hệ thống chuyển động Robot Almega16 sẽ hội tụ về giá trị thực mong  
muốn với một khoảng thời gian hữu hạn, được thực hiện bằng cách là ước lượng  
các đại lượng nhiễu ngoại sau đó đưa vào bộ điều khiển Robot có sẵn. Ưu điểm  
khi ứng dụng bộ quan sát nhiễu FTO là có thể loại bỏ thành phần ma trận quán  
tính nghịch đảo trong phương trình động lực học. Kết quả đạt được, cho thấy hệ  
chuyển động Robot Almega16 đảm bảo sai số của các khớp quay nhanh chóng  
đạt tới không với thời gian quá độ nhỏ, làm cho hệ thống kín ổn định theo tiêu  
chuẩn Lyapunov.     
Từ khóa: Robot Almega 16, b quan sát nhiễu với thời gian hữu hạn, tiêu  
chuẩn Lyapunov.  
 
University of Economics - Technology for Industries  
 Email: vtha@uneti.edu.vn  
Received: 16/4/2021  
Revised: 20/5/2021  
Accepted: 25/6/2021  
 
1. INTRODUCTION    
In  the  kinetic  equation  of  industrial  manipulator  [26],  
there  are  always  external  noise  components  and  internal  
noise. Especially the external noise components inside are  
unknown  or  not  exactly  known  and  these  are  the  
components  that  cause  the  movement  of  the  hand  
   Tạp chí KHOA HỌC VÀ CÔNG NGHỆ Tập 57 - Số 3 (6/2021)                                          Website: https://tapchikhcn.haui.edu.vn  
44  
P-ISSN 1859-3585     E-ISSN 2615-9619                                                                                                                           SCIENCE - TECHNOLOGY  
versatile  applications  [15-20].  In  this  paper,  a  new  DOB  is  planetary gear and Small air gap.  It is influenced by friction  
shown.  form  is  based  on  the  requirement  of  fast  and  such  as  static  friction,  friction,  viscous  friction  and  so  on.  
accurate  estimation  of  robot  disturbances.  Based  on  the  Therefore,  the  first  three  joints  are  the  basic  chain  that  
robot's  dynamic  model,  the  finite  time  control  concept  is  ensures movement in 3D (X, Y, Z) space. The basis for the  
used in the observer design. The resulting FTO can allow for  study  of  the  next  steps  in  robot  manipulator  motion  
estimation of the disturbance for a finite time, this ensures  systems.  The  problem  with  the  controller  is  that:  should  
that the estimated error can disappear after a certain time.  design  the  quality  control  ensures  precise  orbit  grip  that  
The proposed FTO also eliminates the need for acceleration  does  not  depend  on  the  parameters  of  the  model  
calculation.  Its  finite-time  convergence  feature  makes  uncertainty  and  the  impact  on  channel  mix  between  
observing  perturbations  more  accurate  and  fast.  The  match-axis error between joint angles and the angle joints  
structure  of  the  paper  is  presented  as  follows:  Part  1,  actually put a small (< 0.1%).  
problematic, Part 2 is the introduction of the Almega robot  
control object 16. Part 3 is detailed about robot dynamics  
and stability in time. finite time. Part 4 is an introduction to  
the  FTO  Observer.  Part  5  is  the  application  of  the  FTO  
controller to the Almega 16. Robot motion system. Part 6 is  
the conclusion.  
3. PRELIMINARIES  
3.1. Robot Dynamic Model  
The dynamic of an n-link rigid manipular, [1-4, 6] can be  
written as   
  
   
                                         (1)  
τ + τd = M(q)q+C(q,q)q+ G(q)+ τf  
2. OBJECT CONTROL  
Where  q is  the  n  x 1  joint variable  vector, τ is a n  x 1  
generalized  torque  vector  M(q)  is  the  nxn  inertia  matrix,  
The  Almega  16  robot  is  shown  in  Figure  1,  as  follows  
[25]. This is a vertical welding robot with fast, rhythmic and  
precise  movement  characteristics,  including  six–link  axes,  
each one link axes is equipped with a permanent magnet  
synchronous  servo  motor  and  closed  loop  control.  In  the  
article  using  only  three-link  axes  as  the  research  object,  
specifically  the  main  specifications  of  the  three  joints    as  
follows.  
H(q,q) is the n x 1 Coriolis/centripetal vector, G(q) is the n  
x1 gravity vector.  
n denotes the lumped friction effect  
τd R  
from  both  the  motor  and  link  sides  and  are  always  
described  with  the  following  Coulomb-viscous  model,  
namely  
                                                                       (2)  
τf = F sgn(q)+F q  
c
v
with  
F diag F ,.....,F ,F diag F ,.....,F ,F ,F (1i n)  
cnvn  
c
c1  
v
v1  
ci vi  
are the Coulomb and viscous friction coefficients for the ith  
joint.  Such  a  friction  model  could  capture  most  dynamic  
property  of  the  friction  in  a  rigid  joint.  The  equivalent  
motor  torque  at  the  link  side  through  a  reduced  
τ Rn ,τd Rn  
amplification  is  denoted  as  
is  the  
internal/external disturbances which  could be an external  
force, unmodeled or uncertain robot dynamics.  The exact  
meaning  of  τd  decides  on  the  specific  application.  The  
observed  disturbance  for  a  manipulator  can  be  further  
utilized  in  FDI  and  disturbance  rejection  control.  For  
example,  τd  is  deemed  as  the  physical  impact  with  the  
environment  for  collision  detection  scenario  and,  thus,  τd  
can  indicate  the  occurrence  of  the  collision.  The  robot  
dynamics model in Equation (1) has the following property.  
 
Figure 1. Six-link Almega 16 arm  
First joint: Rotation angle: 1350. Center tops from top  
to bottom: 28cm. Center line of axis I to the center of the  
cylinder:  35cm.  Second  joint:  Rotation  angle:  1350.  The  
length between the center of the axis I and II is 65cm. Third  
joint: Angle of rotation: 900 and -450. The length between  
the two centers of axis I and II is 47cm. The total volume of  
the  Almega16  Robot:  V  =  0.12035m3.  Total  weight  of  the  
robot: 250kg. The mass of  joints is as follows: m0 = 100kg,  
m1 = 67kg, m2 = 52kg, m3 = 16kg, m4 = 10kg, m5 = 4kg, m6 = 1kg.     
In which 1: The matrix  
  is skew-symmetry  
M(q)-2C(q,q)  
[21], and it follows that  
T
    
                                                           (3)  
M(q) = C(q,q)+C (q,q)  
3.2. Disturbance Observer GMO  
In  order  to  estimate  the  external  beeb-type  noise  
components  for  hand-operated  systems,  there  are  many  
different  monitors.  One  of  the  most  commonly  used  
observers is the observed (GMO) observed in Reference [9].  
Combined with the generalized momentum p, in Equation  
The  motion  system  Almega16  Robot  is  a  nonlinear  
system  that  has  constant  model  parameters  and  is  
interfering  with  the  channel  between  the  component  
motion axes. According to the literature as follows [26], the  
first three joints have fully integrated the dynamics of the  
freedom arm. The motor connected to the joint is usually a  
(1) could be rewritten to  
T
   
                                                         (4)  
p τ +C (q,q)q- G(q)+ τd  
The GMO component p is estimated as follows:  
45  
KHOA HỌC   
  CÔNG NGHỆ  
 P-ISSN 1859-3585      E-ISSN 2615-9619  
2 b α  
T
zb2 = zb3 +M-1(q)τa +K  
e
                                        (14)  
2
ˆ
   
ˆ
                                                        (5)  
p = τ +C (q,q)q- G(q)+ τd  
ˆ
3 b α  
ˆ
                                                                                (6)  
τd = K0 (p -p)  
3
zb3 = K  
e
                                                                        (15)  
where  ( )denotes  the  estimated  value  and  
.
ˆ
zb1 = q, zb2 = q, zb3 = M-1(q)τd  
eb = q- q, K1, K2 , K3 Rnxn are  diagonal  gain  matrices.  
 
and  
ˆ
ˆ
Where  
.  So  the  estimate  of  the  external  
K diag k 0  
0i
  
0
ˆ
disturbance is given is:    
T
Moreover,  the  corresponding  powers  are  selected  as  
ˆ
   
ˆ
                                      (7)  
τd = K0 (τ+C (q,q)q- G(q)+ τd )dt  
2
α1 = α,α2 =  -1,α3 =  -1 and  < α <1. The operator  
From equations (5) and (6), are determined:  
3
ˆ
α
ˆ
                                                                             (8)  
τd = K0 d - τd )  
.
 is denoted as  
   
   
or convert to a Laplace image which will be written in  
the following format:  
α
x
= x α sgn(x), x Rn  and α > 0                                (16)  
   
   
K0  
Consequently,  the  disturbance  observation  ˆ is  
τd  
                                                                                (9)  
τd  
ˆ
τd =  
s+K0  
According  to  reference  [9]  shows  that  the  component  
ˆ is  a  first  order  inertial  function  τ .  So  the  external  
computed as  
ˆ
τd = M(q)zb3                                                                             (17)  
τd  
d
From (17) shows, the proposed FTO is a ternary system  
that can simultaneously estimate the joint velocity and the  
external  perturbation  component.  It  shows  that  the  joint  
velocity  can  be  obtained instantly  from  the  robot control  
system.  From  the  formula  (13)  -  (15),  it  is  possible  to  
downgrade  the  observational  equation  for  external  
disturbance  state  variables  leading  to  a  reduction  in  the  
computational  heavy  process.  Therefore,  the  downgrade  
FTO is determined as follows:  
perturbation  estimation  ˆ component  of  the  GMO  will  
τd  
converge  exponentially  and  depend  on  the  observation  
matrix  Ko.  Therefore,  the  GMO  observer  always  has  an  
estimated bias in the outer perturbations.  
3.3. Consider steady state in finite time  
Consider the following nonlinear system  
n
                                                            (10)  
x = f(x), x R ,f(0) = 0  
1 r α  
                                           (18)  
-1  
1
where  f  satisfies  the  locally  Lipschitz  continuous  
condition.  Some  basic  knowledge  about  finite  time  
homogeneity and stability (FTS) in the document [22,23].  
zr1 = zr2 +M (q)τa +K  
e
2 r α  
2
zr2 = K  
e
                                                 
 
  (19)  
and  
zb1 = q,zb2 = M-1(q)τd   
4. FINITE-TIME OBSERVER OF ROBOTIC DISTURBANCE  
ˆ
Where  
The main content of this paper is to design a finite time  
observer  so  that  the  observation  of  the  noise  td  can  
converge to its true value in a finite time. In this section 4  
will be presented on the content of constructing the FTO  
observer  to estimate  the  external perturbations. After the  
estimation  is  complete,  the  state  variables  estimate  the  
external perturbations to the existing control system such  
as  the  PID  controller,....  When  the  FTO  Observer  is  
connected, the calculation and elimination will be reduced.  
remove the inverse inertial matrix in the kinetic equation.  
1
2
ˆ
eb = q- q,α1 = α,α2 =  -1, < α < 1.  From  formula  (19),  
we determine the formula to calculate the estimate of the  
external disturbance is determined as follows:  
ˆ
τd M(q)zr2                                                                              (20)  
The  decremented  FOT  observer  will  estimate  the  
perturbed  state  variables  faster  than  the  original  
unremarked design. And from formula (12) shows that still  
exists  the  inverse  matrix  component  of  M(q).  To  remove  
the  inverse  inertial  matrix  component  of  M(q),  it  is  
necessary to  rearrange the  original  system from  equation  
(12)  into  a  transformed  equation  with  different  state  
variables. Multiplying both sides of Equation (12) by M(q)  
yields the following:  
4.1. Finite-Time Observer Design  
  
From Equation (1), the acceleration  qcan be written as  
1  
1  
  
   
q = M (q)τd M (q)(τ C(q,q)q- G(q)- τf )               (11)   
   
Put: τa = τ - C(q,q)q- G(q)- τf , then  (11) is rewritten as  
follows as:    
  
M(q)q = τa + τd                                                                       (21)  
-1  
-1  
Additionally,  the  left  side  of  Equation  (21)  could  be  
altered using the generalized momentum p, namely  
  
q = M (q)τd +M (q)τa                                                         (12)  
where  M-1(q)τd is  treated  as  the  system  disturbances  
with  M-1(q)τa the  system  input.  According  to  reference  
[20],  the  FTO  monitor  for  manipulators  is  specifically  
designed as follows:  
p-M(q)q = τa + τd                                                                 (22)  
Reorganizing Equation (22) and employing Property 1,  
the derivative of the generalized momentum p is rewritten  
as  
1 b α  
p = τ + τ  
1
zb1 = zb2 +K  
e
                                                              (13)  
     
                                                                             (23)  
p
d
   Tạp chí KHOA HỌC VÀ CÔNG NGHỆ Tập 57 - Số 3 (6/2021)                                          Website: https://tapchikhcn.haui.edu.vn  
46  
P-ISSN 1859-3585     E-ISSN 2615-9619                                                                                                                           SCIENCE - TECHNOLOGY  
T
   
V  
Where  τp = M(q)q+ τa = τ+φ(q,q) = C (q,q)q- G(q)- τf .  
V =  
e
eT  
n
The  system  should  observe  that  the  externally  
implemented perturbation variables have been altered and  
have different state variables. A set of FTOs reduced from  
tertiary to quadratic is replaced as follows:  
α
2
e -K epi  
1   
α  
α  
1
2
  =  
k
epi  
- eTdK2 epi  
2i  
di  
i=1  
     (29)  
n
α  
α  
α  
 
2
1
2
2
  = eTdK2 epi  
-
k k epi  
- edTK2 epi  
1 m α  
1
1i 2i  
zm1 = zm2 + τp +K  
e
                                                   (24)  
i=1  
n
2 m α  
 
2
α  
2
1
zm2 = K  
e
                                                                      (25)  
   = - k k epi  
0  
1i 2i  
i=1  
ˆ
ˆ
ˆ
where  zm1 = q,zm2 = τd  and  em = q- q .  
Where  k1i  is  a  positive  defined  diagonal  element  of  K1  
and such that ep = ed = 0. Apply to LaShalle's theorem, to  
ensure that the asymptotic convergence of the deviation e  
to  0  is  guaranteed.  The  next  content  of  the  paper  will  
present  about  demonstrating  the  observer's  finite  
convergence  of  time.  According  to  Definition  2  [27],  
Equations  (28)  and  (29)  are  orderly  homogeneous  with  
respect to weight. Hence, consider equations (28) and (29)  
that  have  a  negative  identity.  From  Theorem  1,  [27],    the  
error  system  is  the  global  FTO.  In  other  words,  the  
estimated  deviations  of  the  turbulent  state  variables  will  
disappear for a finite time. From that it can be concluded,  
the  proposed  downgrade  FTO  is  stable  and  with  
convergent efficiency in finite time...  
The  control  structure  diagram  with  FTO  is  shown  in  
figure 2.   
5. SIMULATION RESULTS  
Afer building up the algorithms and control programs,  
we  will  proceed  to  run  the  simulation  program  to  test  
computer program. The FTO was Simulink with Table 1.  
 
Figure  2.  The  control  structure  diagram  with  FTO  of  robotic  disturbance  
finite-time observer  
Table 1. The Parameter of FTO  
The Parameter value of the  
Symbol  
The parameter  
joint axis  
The  obtained  FTO  given  in  Equations  (24)  and  (25)  is  
structurally similar to the GMO defined in Equations (5) and  
(6)  as  both  observer  shares  the  same  system  states  and  
input.  The  obtained  FTO  observer  is  represented  in  
Equations (26) and (27) and has an estimation structure of  
external perturbation variables similar to that identified in  
Equations  (5)  and  (6),  since  both  of  these  observers  use  
system state variables and as input signals.  
qd  
Desired joint position  
qd1 = qd2 = qd3 = sint  
K1  
K2  
α
Scalar  
K1 = [200, 200, 200]   
K2 = [10000, 10000, 10000]  
α = 1  
Constant  
Power coefficient  
Disturbance  
 
τd  
sint  
After  simulation  we  have  results position  and position  
tracking error is depicted Figure 3÷ 7.  
4.2. Consider the stability and convergence of the FTO  
The observation errors are given as:  
* Desired joint position is sin(t)  
1
α  
ep = ed -K1 ep                                                                  (26)  
α  
2
ed = -K2 ep  
                                                                       (27)  
ˆ
ˆ
Where  ep = p-p,ed = τd - τd ,e = [ep ,ed ] .  
Using  Lyapunov  standard  to  prove  the  stability  of  the  
FTO is proposed as follows;  
Given a positive defined function, (28):  
edTed  
2
k2i  
edTed  
2
n
n
e
pi  
α
α
+1  
V =  
k
τ
2  +  
=
epi  
+
2
 (28)   
   
α +1  
2i  
   
0  
i=1  
i=1  
2
where  k2i  is  the  ith  diagonal  element  of  K2.  Then  its  
derivative is  
 
Joint 1   
47  
KHOA HỌC   
  CÔNG NGHỆ  
 P-ISSN 1859-3585      E-ISSN 2615-9619  
0.004  
0.003  
0.002  
0.001  
0
-0.001  
-0.002  
-0.003  
e3 = qd3 q3  
-0.004  
 
10  
5
0
1
2
3
4
8
9
6
7
Joint 2   
Time(s)  
 
Figure 4. Express the response between the set angles q and real q  
3000  
2500  
2000  
1500  
1000  
500  
0
-500  
 
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
Joint 3   
                                         qd1  
Figure 3. Performing deviation between the angles q set and q real  
 
                            q  
Figure 5. Express the control moments of the controller joints  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.004  
0.003  
0.002  
0.001  
0
-0.001  
-0.002  
-0.003  
-0.004  
e1 = qd1 q1  
-0.2  
0
2
4
6
8
10  
Time (s)  
12  
14  
16  
18  
20  
 
Figure 6. Performing the response of the actual joint position and the actual  
joint position   
10  
5
0
1
2
3
4
6
7
8
9
Time(s)  
 
0.04  
0.035  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
0.004  
0.003  
0.002  
0.001  
0
-0.001  
-0.002  
-0.003  
-0.004  
0
0
5
10  
Time(s)  
15  
20  
10  
5
1
2
3
4
6
7
8
9
 
Time(s)  
Figure  7.  The  deviation  response  controls  the  actual  joint  position  and  
estimated joint position  
 
   Tạp chí KHOA HỌC VÀ CÔNG NGHỆ Tập 57 - Số 3 (6/2021)                                          Website: https://tapchikhcn.haui.edu.vn  
48  
P-ISSN 1859-3585     E-ISSN 2615-9619                                                                                                                           SCIENCE - TECHNOLOGY  
[11]. Haddadin S., De Luca A., Albu-Schäffer A., 2017. Robot collisions: A  
survey on detection, isolation, and identification. IEEE Trans. Robot, 33, 1292  
1312.  
Comment: The simulation results of the real state and  
the  above  estimate  prove  that  the  synthesized  FTO  
observer is correct, showing that the joints of the Almega  
16 robot are good with small setting time, less oscillation,  
over-adjustment.  
[12].  Cho  C.N.,  Kim  J.H.,  Kim  Y.L.,  Song  J.B.,  Kyung  J.H.,  2012.  Collision  
detection  algorithm  to  distinguish  between  intended  contact  and  unexpected  
collision. Adv. Robot, 26, 1825–1840.    
6. CONCLUSION  
[13].  Mohammadi  A.,  Tavakoli  M.,  Marquez  H.J.,  Hashemzadeh  F.,  2013.  
Nonlinear  disturbance  observer  design  for  robotic  manipulators.  Control  Eng.  
Pract., 21, 253–267.  
The order reduction FTO has omitted acceleration and  
inverse  matrix  matrix,  resulting  in  the  FTO  making  the  
estimation  deviations  converge  to  0  in  a  finite  time.  
Although  FTO  has  a  more  complex  formula  and  thus  the  
calculation  time  increases  slightly  compared  to  other  
observers.  The  theory  and  simulation  results  show  that  
using  the  FTO  observatory  to  estimate  the  perturbation  
components outside the Almega 16 robot motion system  
has  ensured  the  real  joint  position  closely  follows  the  
estimated  joint  position  and ensures  the  actual  matching  
position  is  closely  related  to  the  matching  position  with  
small error.   
[14]. Nikoobin A., Haghighi R., 2009. Lyapunov-based nonlinear disturbance  
observer for serial n-link robot manipulators. J. Intell. Robot. Syst., 55, 135–153.  
[15]. Menard T., Moulay E., Perruquetti W., 2010. A global high-gain finite-  
time observer. IEEE Trans. Autom. Control, 55, 1500–1506.  
[16]. Lopez-Ramirez F., Polyakov A., Efimov D., Perruquetti W., 2018. Finite-  
time  and  fixed-time  observer  design:  Implicit  Lyapunov  function  approach.  
Automatica, 87, 52–60.  
[17]. Menard T., Moulay E., Perruquetti W., 2017. Fixed-time observer with  
simple gains for uncertain systems. Automatica, 81, 438–446.  
 
[18]. Shen Y., Xia X., 2008. Semi-global finite-time observers for nonlinear  
systems. Automatica, 44, 3152–3156.  
 
REFERENCES  
[19]. Shtessel Y.B., Shkolnikov I.A., Levant A., 2007. Smooth second-order  
sliding modes: Missile guidance application. Automatica, 43, 1470–1476.  
 [1]. Pi Y., Wang X., 2010. Observer-based cascade control of a 6-DOF parallel  
hydraulic manipulator in joint space coordinate. Mechatronics, 20, 648–655.  
[20].  Perruquetti  W.,  Floquet  T.,  Moulay  E.,  2008.  Finite-time  observers:  
Application to secure communication. IEEE Trans. Autom. Control, 53, 356–360.  
[2]. Sahabi M.E., Li G., Wang X., Li S., 2016. Disturbance Compensation Based  
Finite-Time  Tracking  Control  of  Rigid  Manipulator.  Math.  Probl.  Eng.  2016,  
2034795.  
[21]. Siciliano B., Sciavicco L., Villani L., Oriolo G., 2010. Robotics: Modelling,  
Planning  and  Control.  Springer  Science  &  Business  Media:  Berlin/Heidelberg,  
Germany.    
[3].  Chen  W.H.,  Yang  J.,  Guo  L.,  Li  S.,  2016.  Disturbance-observer-based  
control and related methods-An overview. IEEE Trans. Ind. Electron., 63, 1083–  
1095.  
[22].  Bhat  S.P.,  Bernstein  D.S.,  2000.  Finite-time  stability  of  continuous  
autonomous systems. SIAM J. Control Optim., 38, 751–766.  
[4].  Bona B., Indri M., 2005. Friction compensation in robotics: An overview.  
In  Proceedings  of  the  44th  IEEE  Conference  on  Decision  and  Control,  Seville,  
Spain, pp. 4360–4367.    
[23].  Bhat  S.P.,  Bernstein  D.S.,  2005.  Geometric  homogeneity  with  
applications to finite-time stability. Math. Control. Signals Syst., 17, 101–127.  
[24]. Bacciotti A., Rosier L., 2006. Liapunov Functions and Stability in Control  
Theory. Springer Science & Business Media: Berlin/Heidelberg, Germany.  
[5]. Chen W.H., Ballance D.J., Gawthrop P.J., O’Reilly J., 2000. A nonlinear  
disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron., 47, 932–  
938.  
[25].  Ha  V.  T,  2012.  Some  control  solutions aim  to  improve  the  quality  of  
industrial  hand  motions.    Ph.D.  thesis,    Hanoi  University  of  Science  and  
Technology.  
[6]. Magrini E., Flacco F., De Luca A., 2015. Control of generalized contact  
motion and force in physical human-robot interaction. In Proceedings of the 2015  
IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA,  
USA, pp. 2298–2304.    
[26].  Neil  M.,  Frank  L.L.,  2004.  Robot  Manipulator  Control  Theory  and  
Practice. Marcel Dekker.   
[27]. Pengfei Cao, Yahui Gan, Xianzhong Dai, 2019. Finite-Time  Disturbance  
Observer  for  Robotic  Manipulators.Sensors  (Basel),  19(8):1943.  doi:  
[7]. Magrini E., De Luca A., 2016. Hybrid force/velocity control for physical  
human-robot  collaboration  tasks.  In  Proceedings  of  the  2016  IEEE/RSJ  
International  Conference  on  Intelligent  Robots  and  Systems  (IROS),  Daejeon,  
Korea, pp. 857–863.    
10.3390/s19081943.  
 
 
[8]. Gaz C., Magrini E., De Luca A., 2018. A model-based residual approach for  
human-robot collaboration during manual polishing operations. Mechatronics 55,  
234–247.  
THÔNG TIN TÁC GI  
Võ Thu Hà   
[9]. De Luca A., Mattone R., 2003. Actuator failure detection and isolation  
using generalized momenta. In Proceedings of the IEEE International Conference  
on Robotics and Automation, Taipei, Taiwan, Volume 1, pp. 634–639.    
Trường Đại học Kinh tế - Kỹ thuật Công nghiệp  
 
 
[10].  Ren  T.,  Dong  Y.,  Wu  D.,  Chen  K.,  2018.  Collision  detection  and  
identification for robot manipulators based on extended state observer. Control  
Eng. Pract., 79, 144–153.  
 
49  
pdf 6 trang yennguyen 20/04/2022 1740
Bạn đang xem tài liệu "Using the finite - time disturbance observer (FTO) for robotic manipulator almega 16", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

File đính kèm:

  • pdfusing_the_finite_time_disturbance_observer_fto_for_robotic_m.pdf