TD-DFT benchmark for UV-Vis spectra of coumarin derivatives

Cite this paper: Vietnam J. Chem., 2021, 59(2), 203-210  
DOI: 10.1002/vjch.202000200  
Article  
TD-DFT benchmark for UV-Vis spectra of coumarin derivatives  
Mai Van Bay1,2, Nguyen Khoa Hien3, Phan Thi Diem Tran3, Nguyen Tran Kim Tuyen4,  
Doan Thi Yen Oanh5, Pham Cam Nam6*, Duong Tuan Quang1*  
1University of Education, Hue University, 34 Le Loi, Hue City, Thua Thien Hue 49000, Viet Nam  
2The University of Danang- University of Science and Education, 41 Le Duan, Hai Chau, Da Nang City  
50000, Viet Nam  
3Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 312 Huynh Thuc  
Khang, Phu Hoa, Hue City, Thua Thien Hue 49000, Viet Nam  
4Kontum Community College, 704 Phan Dinh Phung, Kon Tum City, Kon Tum 60000, Viet Nam  
5Publishing House for Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang  
Quoc Viet, Cau Giay, Hanoi 10000, Viet Nam  
6The University of Danang - University of Science and Technology, 41 Le Duan, Hai Chau, Da Nang City  
50000, Viet Nam  
Submitted December 9, 2020; Accepted December 30, 2020  
Abstract  
The predictive performances for maximum absorption wavelength of the PBE, BP86, PBE0, B3LYP, M06, M06-  
2X, CAM-B3LYP, LC-wPBE, APDF, wB97XD, and PW6B9D3 functionals have been benchmarked through  
comparison of maximum absorption wavelength values between calculation and experiment of 21 coumarin derivatives.  
For the results obtained from direct calculation by these functionals, the predictive performance decreases gradually in  
the following order: B3LYP > APDF > M06 > PW6B9D3 > PBE0 > BP86 > PBE > M06-2X > CAM-B3LYP >  
wB97XD > LC-wPBE. B3LYP functional gives the best predictive performance, with the smallest value of the mean  
absolute error (MAE = 15 nm) and the root mean square deviation (RMSD=19 nm). When using the results obtained  
through correction based on the linear correlation, the predictive performance decreases gradually in the following  
order: M06-2X > PBE0, M06, PW6B9D3 > B3LYP, APDF > CAM-B3LYP, LC-wPBE, wB97XD > PBE and BP86.  
M06-2X functional gives the best predictive performance, with the smallest values of MAEfix (7 nm) and RMSDfix  
(9nm). The correction is very necessary because the values of the corrected maximum absorption wavelengths are  
closer to the experimental maximum absorption wavelengths. The values of MAEfix and RMSDfix are much smaller than  
those of MAE and RMSD.  
Keywords. DFT, TD-DFT, UV-Vis, coumarin, benchmark.  
1. INTRODUCTION  
and fluorescence spectra is necessary in order to  
provide a scientific basis for the design and  
Coumarins are from the benzoryrone family, an development  
important class of phytochemicals. Over 1300 thesederivatives.[3,7,8]  
different coumarin derivatives have been identified, Based on methods of electronic structure theory  
of  
new  
materials  
from  
including natural and synthetic derivatives.[1] for studying the electron excited states, theoretical  
Coumarin derivatives are widely used in medicine, calculations allow predicting quite accurately optical  
food, and industry.[2] In particular, many properties of molecules. Some recent publications  
applications are based on the outstanding optical show that the UV-Vis spectra of some large organic  
properties of coumarin derivatives such as dyes, molecules are predictable with high accuracy and  
color indicators, sunscreens, organic light-emitting reasonable computing costs by using the time-  
diodes, fluorescent markers, and fluorescence dependent density functional theory (TD-DFT)  
sensors[3-6] Therefore, the prediction of the optical method. Therefore, TD-DFT is the current popular  
properties of coumarin derivatives such as UV-Vis method for calculation of the electron excited states  
203 Wiley Online Library © 2021 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH GmbH  
Vietnam Journal of Chemistry  
Duong Tuan Quang et al.  
of large molecules[9-13] So far, many DFT methods for calculation of the UV-Vis spectra of 20  
(pure, hybrid, long-range-corrected, dispersion conjugated organic compounds in solvent.[18] The  
corrected, etc.) have been developed.[14] However, results show that B3LYP functional gives the  
accurate prediction of UV-Vis spectra using DFT smallest mean signed error (MSE) and mean  
methods depends on the structure of molecules. unsigned error (MUE) for the position of absorption  
Therefore, it is necessary to choose suitable DFT peaks, but is not the most efficient in terms of root  
functional for each group of compounds to get the mean square deviation (RMSD) or largest standard  
accurate calculation results.[15,16] Denis Jacquemin et deviation (SD). Meanwhile, M06-2X functional  
al. used 29 DFT functionals to predict the UV-Vis provides the most appropriate results with the  
spectra of about 500 compounds including bio- experiment for the band shapes corresponding to the  
organic molecules and dyes. The obtained results absorption spectra of conjugated compounds.[18] So  
were compared with the previous theoretical far, some studies, but not many, have been  
calculations or experimental measurements. The successful in using TD-DFT method to calculate the  
results show that the predictive performance of the UV-Vis spectra of coumarin derivatives.[19,20]  
DFT functionals strongly depends on the molecular  
In this work, the predictive performances of the  
structure of organic compounds. For example, PBE0 PBE, BP86, PBE0, B3LYP, M06, M06-2X, CAM-  
and LC-ωPBE(20) give very good results in B3LYP, LC-wPBE; APDF, wB97XD, and  
predicting the UV-Vis spectra of many neutral PW6B9D3 functionals for maximum absorption  
organic dyes but are completely inconsistent with wavelength of 21 coumarin derivatives (figure 1) are  
cyanine-like derivatives.[17] Azzam Charaf-Eddin et benchmarked through comparison of maximum  
al used the six hybrid functionals, including B3LYP, absorption wavelength values between calculation  
PBE0, M06, M06-2X, CAM-B3LYP and LC-PBE and experiment.  
Figure 1: Coumarin derivatives for this investigation  
© 2021 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH GmbH www.vjc.wiley-vch.de 204  
Vietnam Journal of Chemistry  
TD-DFT benchmark for UV-Vis spectra of…  
2. COMPUTATIONAL METHODS  
root mean square error, RMSE) are frequently used  
to evaluate the performance of these models.[24] The  
In this study, the optimized geometry of all mean signed error (MSE) (or average signed  
difference, MSD) is also used for the purpose of  
examining the direction of the errors.[14,25] In  
addition, the linear correlation relationship between  
the experimental and the calculated values of the  
maximum absorption wavelength is also used to  
evaluate the method's predicted performance.[26]  
molecules in the ground state is carried out by using  
density functional theory (DFT) at the PBE0/6-  
311++G(d,p) level of theory.[15] Here, it should be  
emphasized that the PBE0 density functional has  
been evaluated to accurately predict the geometrical  
structure of most of the organic molecules in the  
ground states.[21] The UV-Vis spectra of coumarin  
derivatives are carried out by using time-dependent  
density functional theory (TD-DFT)[9,10] at the X/6-  
311++G(d,p) level of theory, where X: PBE, BP86,  
PBE0, B3LYP, M06, M06-2X, CAM-B3LYP, LC-  
wPBE; APDF, wB97XD and PW6B9D3. The  
polarizable continuum model (PCM) is applied for  
all DFT and TD-DFT calculations, with the solvent  
used in the calculations being the same as that used  
in the experiment.[22] All calculations are performed  
using Gaussian 16 Revision A.03 program.[23]  
Then, the corrected calculated maximum absorption  
    
wavelength    
  is also determined based on the  
    
     
linear correlation equations between   
and  
    
    
 
.
The predictive performance of DFT  
    
functionals is once again evaluated through  
    
[14,25]  
    
comparison between values of   
and   
.
    
    
3. RESULTS AND DISCUSSION  
3.1. TD-DFT benchmark based on comparison  
    
    
     
between the   
and   
    
The predictive performance of DFT functionals  
for maximum absorption wavelength of coumarin  
derivatives is benchmarked through comparison  
The results of calculation of maximum absorption  
wavelength of 21 coumarin derivatives using 11  
DFT functionals, difference between the calculated  
maximum absorption wavelength and the  
experimental maximum absorption wavelength  
(Δλmax), and statistical analysis data of MAE,  
RMSM, and MSE are presented in table 1 and  
figure 2.  
between the calculated maximum absorption  
     
wavelength (  
) and experimental maximum  
    
    
absorption wavelength (  
). In this case, both the  
    
mean absolute error (MAE) (or mean unsigned error,  
MUE), and root mean square deviation (RMSD) (or  
70  
50  
62  
49  
45  
43  
30  
29  
29  
29  
30  
10  
23  
22  
20  
21  
15  
-10  
-30  
-50  
-70  
-12  
-19  
-21  
-20  
-22  
-42  
-45  
-49  
MSE MAE  
-62  
     
Figure 2: Graph of MSE and MAE values by DFT functionals based on comparison between the   
and  
    
    
 
of coumarin derivatives  
    
© 2021 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH GmbH www.vjc.wiley-vch.de 205  
Vietnam Journal of Chemistry  
Table 1: Results of comparison between the   
Duong Tuan Quang et al.  
of coumarin derivatives  
    
    
     
and   
    
    
     
Δλmax =  
-   
(nm)  
    
    
CAM-  
B3LYP wPBE  
Compound  
LC-  
PW6B9  
D3  
    
    
PBE  
BP86 PBE0 B3LYP M06 M06-2X  
APDF wB97XD  
[Ref]  
 
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
MSE  
MAE  
RMSD  
6
6
-26 -19 -20 -39 -36 -48 -24 -38 -25  
-11 -9 -19 -10  
326  
[27]  
[27]  
[27]  
[27]  
[27]  
[27]  
[27]  
[27]  
[27]  
[27]  
[27]  
[27]  
[27]  
[27]  
[27]  
[27]  
[27]  
[27]  
[27]  
[27]  
[27]  
30 30  
1
7
6
3
2
280  
351  
384  
360  
324  
355  
370  
376  
400  
373  
459  
436  
436  
408  
420  
376  
278  
340  
445  
436  
22 21 -24 -15 -21 -41 -41 -56 -21 -43 -22  
25 25 -28 -17 -25 -52 -50 -70 -24 -54 -27  
46 46  
23 22 -15  
17 16 -20 -13 -16 -35 -33 -45 -18 -35 -19  
50 49 -13  
50 49 -15  
46 45 -16  
39 38 -22 -11 -22 -46 -47 -64 -18 -50 -21  
16 17 -38 -27 -37 -63 -66 -88 -35 -70 -38  
25 25 -37 -25 -37 -59 -61 -79 -33 -65 -36  
36 37 -23 -11 -21 -50 -52 -75 -19 -57 -23  
32 32 -28 -17 -26 -52 -55 -75 -25 -59 -28  
-8  
3
-4 -28 -26 -42  
-5 -29  
-7  
-8 -11 -31 -29 -42 -13 -31 -14  
-2 -13 -39 -39 -59  
-9 -43 -13  
-4 -16 -42 -43 -63 -11 -47 -15  
-5 -16 -42 -43 -64 -14 -47 -16  
4
4
-46 -36 -45 -64 -66 -81 -43 -69 -44  
63 63 -11  
34 34  
53 52  
-5  
0
3
10  
6
-11 -43 -44 -65  
-7 -49 -11  
3
-3  
11  
0
3
-57 -67  
5
0
-59  
-26  
3
-3  
-27 -25 -41  
-6 -50 -41 -48 -66 -68 -83 -47 -71 -48  
-46 -37 -44 -62 -64 -81 -43 -68 -44  
0
29 29 -22 -12 -20 -42 -45 -62 -19 -49 -21  
30 29  
34 34  
23  
27  
15  
19  
21  
25  
43  
46  
45  
48  
62  
65  
20  
24  
49  
51  
22  
26  
The calculation results show that the DFT functional for other derivatives.[14,25] This indicates  
functionals used to predict the maximum absorption that it is necessary to choose right functionals for  
wavelength of coumarin derivatives can be divided each compound. The studied results also show that  
into three groups with different performance. The there is no difference between MAE and RMSD  
best performing group includes 5 functionals, sorted when using them for these model evaluation studies.  
in descending order B3LYP (MAE = 15, RMSD =  
19) > APDF (MAE = 20, RMSD = 24) > M06  
(MAE = 21, RMSD = 25) > PW6B9D3 (MAE = 22,  
RMSD = 26) > PBE0 (MAE = 23, RMSD = 27).  
When considering the direction of the errors,  
     
PBE and BP86 functionals give values of   
    
    
systematically higher than the values of   
.
    
Meanwhile, the remaining functionals give values of  
     
The average performing group includes  
2
 
 
systematically smaller than the values of  
. The results indicate that the values of λmax  
    
    
    
functionals, sorted in descending order BP86 (MAE  
= 29, RSMSD = 34) > PBE (MAE = 30, RMSD =  
34). The worst performing group includes 4  
functionals, sorted in descending order M06-2X  
(MAE = 43, RMSD = 46) > CAM-B3LYP (MAE =  
45, RMSD = 48) > wB97XD (MAE = 49, RMSD =  
51) > LC-wPBE (MAE = 62, RMSD = 65).  
In this study, B3LYP and PBE0 belong to the  
group of functionals that give the best predictive  
performance of the maximum absorption  
systematically obey the order of PBE > BP86 >  
B3LYP > APDF > M06 > PW6B9D3 > PBE0 >  
M06-2X > CAM-B3LYP > wB97XD > LC-wPBE.  
3.2. TD-DFT benchmark based on comparison  
    
    
between the (  
) and (  
)
    
    
The results of the linear correlation analysis between  
experimental maximum absorption wavelength and  
calculated maximum absorption wavelength are  
shown in figure 3. The results show that all the DFT  
functionals used above yield a very good linear  
wavelength,  
consistent  
with  
previous  
publications.[14,25] B3LYP functional gives better  
performance than PBE0 functional for coumarin  
derivatives, whereas in some previous studies, PBE0  
functional gave better performance than B3LYP  
    
    
     
correlation between   
and   
. The evidence is  
    
© 2021 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH GmbH www.vjc.wiley-vch.de 206  
Vietnam Journal of Chemistry  
TD-DFT benchmark for UV-Vis spectra of…  
that the linear correlation coefficient (R) ranges from equation y = x. Meanwhile, the remaining  
0.932 to 0.982, sorted in descending order functionals result in all the points on the graph as  
corresponding to the functionals as follows: M06-2X being above a line with the equation y = x. This  
(R = 0.982) > PW6B9D3 (R = 0.979) > M06 (R = shows that whole recommended DFT functionals  
0.977) > PBE0 (R = 0.976) > APDF (R = 0.975) > give the calculated maximum absorption wavelength  
B3LYP (R = 0.971) > CAM-B3LYP (R = 0.967) > systematically larger, or smaller than the  
LC-wPBE (R = 0.9654) > wB97XD (R = 0.9649) > experimental maximum absorption wavelength.  
BP86 (R = 0.933) > PBE (R = 0.932). Thus, if it is  
On the basis of the linear relationship between  
based on MAE and RMSE (obtained from experimental maximum absorption wavelengths and  
    
     
calculated maximum absorption wavelengths (figure  
3), the calculated maximum absorption wavelengths  
can be determined according to the equations in  
table 2. The calculated differences between the  
comparison between   
and   
), M06-2X  
    
    
belongs to the group of functionals with the worst  
predictive performance (with the largest error), but  
from linear correlation analysis, M06-2X belongs to  
the group of functionals with the best predictive  
performance (with the largest linear correlation  
coefficient). When considering the direction of the  
errors, the PBE and BP86 functionals result in all the  
points on the graph as being below a line with the  
corrected  
calculated  
maximum  
absorption  
wavelengths and experimental maximum absorption  
    
wavelengths   
and statistical analysis data of  
    
MAE, RMSM, and MSE are presented in table 3 and  
figure 4.  
    
    
     
Figure 3: Diagrams of linear correlation between the   
and   
    
The calculation results show that the MAEfix the RMSDfix values decrease from 37.1 % (B3LYP)  
values decrease from 33.8 % (B3LYP) to 84.6 % to 79.8 % (M06-2X) compared to those without  
(LC-wPBE) compared to those without correction, correction. The values of MAEfix and RMSDfix obey  
© 2021 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH GmbH www.vjc.wiley-vch.de 207  
Vietnam Journal of Chemistry  
Duong Tuan Quang et al.  
a M06-2X (MAEfix = 7, RMSDfix = 9) < PBE0, M06, maximum absorption wavelength of coumarin  
PW6B9D3 (MAEfix = 9, RMSDfix = 11) < B3LYP, derivatives. These results show the importance of  
APDF (MAEfix = 10, RMSDfix = 12) < CAM- correcting the calculated results for the maximum  
B3LYP, LC-wPBE, wB97XD (MAEfix = 10, absorption wavelength of coumarin derivatives by  
RMSDfix = 13) < PBE, BP86 (MAEfix = 15, RMSDfix TD-DFT, in order to obtain the values of corrected  
= 19) order. These results indicate that M06-2X maximum absorption wavelength that are closer to  
functional gives the best predictive performance for experimental maximum absorption wavelengths.  
    
     
    
Table 2: Equations for calculation of   
according to   
of DFT functionals  
    
Functionals  
Equations  
    
     
PBE  
 
            
            
            
            
            
            
            
- 17.802  
    
    
    
     
BP86  
 
 
 
 
 
 
- 16.424  
- 66.822  
- 59.939  
- 89.388  
- 93.783  
- 24.851  
    
    
    
     
    
PBE0  
    
    
     
B3LYP  
M06  
    
    
    
     
    
    
    
     
M06-2X  
CAM-B3LYP  
    
    
    
     
    
    
    
     
    
LC-wPBE  
APDF  
 
 
 
            
            
            
- 31.871  
- 65.196  
- 28.301  
    
    
     
    
     
    
    
    
wB97XD  
    
    
     
    
PW6B9D3  
 
            
- 69.671  
    
70  
60  
50  
40  
30  
20  
10  
0
62  
MAE without fixing  
MAE with linear fixing  
49  
45  
43  
30  
15  
29  
23  
15  
22  
21  
20  
15  
10  
10  
9
10  
9
10  
9
9
7
Figure 4: Graph of MAE values with/without linear fixing  
    
    
     
4. CONCLUSION  
between   
and   
. For the results obtained  
    
from direct calculation by functionals, B3LYP  
functional gives the best predictive performance of  
the maximum absorption wavelengths, with the  
smallest values of MAE and RMSD. However,  
when using the results obtained through correction  
based on the linear correlation between the  
experimental maximum absorption wavelengths and  
the calculated maximum absorption wavelengths,  
the M06-2X functional gives the best predictive  
performance, with the smallest values of MAEfix and  
The predictive performances of the PBE, BP86,  
PBE0, B3LYP, M06, M06-2X, CAM-B3LYP, LC-  
wPBE; APDF, wB97XD, and PW6B9D3  
functionals for maximum absorption wavelength  
have been benchmarked through comparison of  
maximum absorption wavelength values between  
calculation and experiment of 21 coumarin  
derivatives. The results show that all the DFT  
functionals yield a very good linear correlation  
© 2021 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH GmbH www.vjc.wiley-vch.de 208  
Vietnam Journal of Chemistry  
TD-DFT benchmark for UV-Vis spectra of…  
RMSDfix. This correction is very necessary because maximum absorption wavelengths. The values of  
the values of the corrected maximum absorption MAEfix and RMSDfix are much smaller than MAE  
wavelengths are closer to the experimental and RMSD.  
    
    
    
Table 3: Results of comparison between the   
and   
of coumarin derivatives  
    
    
    
    
    
   
=  
-   
    
(nm)  
    
Compounds  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
-21  
4
-6  
-4  
17  
-4  
-11  
20  
20  
16  
10  
-15  
-6  
-21  
4
-7  
-4  
17  
-5  
-12  
20  
20  
15  
9
-14  
-5  
6
-18  
4
-18  
4
-8  
-4  
15  
-5  
-16  
4
-16  
4
-9  
-11  
13  
-6  
1
2
0
0
23  
0
-4  
20  
9
10  
6
3
3
27  
0
-8  
21  
10  
16  
2
-2  
4
-4  
-9  
-4  
1
-8  
-12  
-4  
-36  
16  
-7  
-7  
0
-18  
4
-9  
-5  
13  
-5  
1
25  
1
-5  
20  
9
11  
5
2
-18  
4
-9  
-6  
13  
-5  
-3  
9
-10  
-5  
15  
-5  
-2  
7
-8  
-5  
14  
-4  
-3  
9
-5  
-4  
11  
10  
13  
1
-1  
-4  
13  
0
-20  
18  
7
14  
-21  
-18  
0
10  
12  
11  
10  
12  
0
-1  
-3  
14  
0
-20  
15  
6
15  
-19  
-16  
0
10  
12  
9
4
8
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
MSEfix  
MAEfix  
RMSDfix  
13  
-1  
1
-4  
14  
0
-19  
14  
6
14  
-18  
-15  
0
12  
-4  
2
-5  
16  
1
-20  
11  
10  
14  
-16  
-14  
0
9
-7  
4
8
7
12  
-1  
0
-3  
13  
-1  
-18  
13  
5
13  
-16  
-14  
0
-3  
-8  
-7  
4
-5  
-16  
1
-35  
17  
-13  
-10  
0
-3  
-7  
-7  
3
-6  
-15  
-1  
-36  
19  
-12  
-10  
0
0
5
2
13  
-1  
-13  
-2  
23  
6
-6  
-4  
0
2
-26  
33  
7
24  
-35  
-30  
0
-25  
33  
8
24  
-36  
-30  
0
15  
19  
15  
19  
9
11  
9
11  
7
9
10  
13  
10  
13  
10  
13  
9
11  
ground states in coumarin-based biothiol sensing,  
Dyes and Pigments, 2018, 152, 118-126.  
4. R. K. Chaudhuri. Sunscreen compositions and  
methods, U.S. Patent Application No. 11/803, 188,  
2008.  
Acknowledgment. This research was funded by the  
Vietnam National Foundation for Science and  
Technology Development (NAFOSTED) under grant  
number 104.06-2017.51 (Duong Tuan Quang).  
5. C. H. Chen, C. W. Tang. Efficient green organic  
light-emitting diodes with stericly hindered coumarin  
dopants, Applied Physics Letters, 2001, 79(22), 3711-  
3713.  
6. N. K. Hien, M. V. Bay, N. C. Bao, Q. V. Vo, N. D.  
Cuong, T. V. Thien, N. T. A. Nhung, D. U. Van, P.  
C. Nam, D. T. Quang. Coumarin-based dual  
chemosensor for colorimetric and fluorescent  
detection of Cu2+ in water media, ACS omega, 2020,  
5(33), 21241-21249.  
REFERENCES  
1. N. Farinola, N. Piller. Pharmacogenomics: its role in  
re-establishing  
coumarin  
as  
treatment  
for  
lymphedema, Lymphat. Res. Biol., 2005, 3(2), 81-86.  
2. M. A. Musa, J. S. Cooperwood, M. O. F. Khan. A  
review of coumarin derivatives in pharmacotherapy  
of breast cancer, Curr. Med. Chem., 2008, 15(26),  
2664-2679.  
3. N. K. Hien, D. T. Nhan, W. Y. Kim, M. Van Bay, P.  
C. Nam, D. U. Van, I.-T. Lim, J. S. Kim, D. T.  
Quang. Exceptional case of Kasha's rule: Emission  
from higher-lying singlet electron excited states into  
7. H. Lee, R. D. Hancock, H.-S. Lee. Role of  
fluorophore-metal interaction in photoinduced  
electron transfer (PET) sensors: Time-dependent  
© 2021 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH GmbH www.vjc.wiley-vch.de 209  
Vietnam Journal of Chemistry  
Duong Tuan Quang et al.  
density functional theory (TD-DFT) study, The  
Journal of Physical Chemistry A, 2013, 117(50),  
13345-13355.  
Montalti, J. Bloino, V. Barone. Benchmarking TD-  
DFT against vibrationally resolved absorption spectra  
at room temperature: 7-aminocoumarins as test cases,  
Journal of Chemical Theory and Computation, 2015,  
11(11), 5371-5384.  
8. N. K. Hien, M. Van Bay, P. D. Tran, N. T. Khanh, N.  
D. Luyen, Q. V. Vo, D. U. Van, P. C. Nam, D. T.  
Quang. A coumarin derivative-Cu2+ complex-based 17. D. Jacquemin, V. Wathelet, E. A. Perpete, C. Adamo.  
fluorescent chemosensor for detection of biothiols,  
RSC Advances, 2020, 10(60), 36265-36274.  
9. M. L. Neto, K. Agra, J. Suassuna Filho, F. Jorge. TD-  
Extensive TD-DFT benchmark: singlet-excited states  
of organic molecules, Journal of Chemical Theory  
and Computation, 2009, 5(9), 2420-2435.  
DFT calculations and photoacoustic spectroscopy 18. A. Charaf-Eddin, A. Planchat, B. Mennucci, C.  
experiments used to identify phenolic acid functional  
biomolecules in Brazilian tropical fruits in natura,  
Spectrochimica Acta Part A: Molecular and  
Biomolecular Spectroscopy, 2018, 193, 249-257.  
Adamo, D. Jacquemin. Choosing a functional for  
computing absorption and fluorescence band shapes  
with TD-DFT, Journal of Chemical Theory and  
Computation, 2013, 9(6), 2749-2760.  
10. S. Markovic, J. Tosovic. Application of time- 19. R. J. Cave, K. Burke, E. W. Castner. Theoretical  
dependent density functional and natural bond orbital  
theories to the UV-Vis absorption spectra of some  
phenolic compounds, The Journal of Physical  
Chemistry A, 2015, 119(35), 9352-9362.  
investigation of the ground and excited states of  
coumarin 151 and coumarin 120, The Journal of  
Physical Chemistry A, 2002, 106(40), 9294-9305.  
20. R. Sánchez-de-Armas, M. A. San Miguel, J. Oviedo,  
J. F. Sanz. Coumarin derivatives for dye sensitized  
solar cells: a TD-DFT study, Physical Chemistry  
Chemical Physics, 2012, 14(1), 225-233.  
11. D. T. Nhan, N. T. A. Nhung, V. Vien, N. T. Trung,  
N. D. Cuong, N. C. Bao, D. Q. Huong, N. K. Hien,  
D.  
T.  
Quang.  
A
benzothiazolium-derived  
colorimetric and fluorescent chemosensor for 21. A. D. Laurent, D. Jacquemin. TD-DFT benchmarks:  
detection of Hg2+ ions, Chemistry Letters, 2017,  
46(1), 135-138.  
a
review, International Journal of Quantum  
Chemistry, 2013, 113(17), 2019-2039.  
12. N. K. Hien, N. C. Bao, N. T. A. Nhung, N. T. Trung, 22. J. Tomasi, B. Mennucci, R. Cammi. Quantum  
P. C. Nam, T. Duong, J. S. Kim, D. T. Quang. A  
highly sensitive fluorescent chemosensor for  
mechanical continuum solvation models, Chemical  
reviews, 2005, 105(8), 2999-3094.  
simultaneous determination of Ag(I), Hg(II), and 23. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M.  
Cu(II) ions: Design, synthesis, characterization and  
application, Dyes and Pigments, 2015, 116, 89-96.  
13. M. Van Bay, N. K. Hien, P. T. Quy, P. C. Nam, D. U.  
Robb, J. Cheeseman, G. Scalmani, V. Barone, G.  
Petersson, H. Nakatsuji. Gaussian 16 revision a. 03.  
2016; gaussian inc, Wallingford CT, 2016, 2(4).  
Van, D. T. Quang. Using calculations of the 24. T. Chai, R. R. Draxler. Root mean square error  
electronically excited states for investigation of  
fluorescent sensors: A review, Vietnam J. Chem.,  
2019, 57(4), 389-400.  
(RMSE) or mean absolute error (MAE)? - Arguments  
against avoiding RMSE in the literature,  
Geoscientific model development, 2014, 7(3), 1247-  
1250.  
14. A. Ali, M. I. Rafiq, Z. Zhang, J. Cao, R. Geng, B.  
Zhou, W. Tang. TD-DFT benchmark for UV-Visible 25. D. Jacquemin, E. A. Perpete, G. E. Scuseria, I.  
spectra of fused-ring electron acceptors using global  
and range-separated hybrids, Physical Chemistry  
Chemical Physics, 2020, 22(15), 7864-7874.  
Ciofini, C. Adamo. TD-DFT performance for the  
visible absorption spectra of organic dyes:  
conventional versus long-range hybrids, Journal of  
Chemical Theory and Computation, 2008, 4(1), 123-  
135.  
15. D. Jacquemin, I. Duchemin, X. Blase. 00 energies  
using hybrid schemes: Benchmarks of TD-DFT, CIS  
(D), ADC (2), CC2, and BSE/GW formalisms for 80 26. J. Miller, J. C. Miller. Statistics and chemometrics for  
real-life compounds, Journal of Chemical Theory  
and Computation, 2015, 11(11), 5340-5359.  
16. F. Muniz-Miranda, A. Pedone, G. Battistelli, M.  
analytical chemistry, Pearson educationm 2018.  
27. R. W. Sabnis. Handbook of fluorescent dyes and  
probes, John Wiley & Sons, 2015.  
Corresponding authors: Duong Tuan Quang  
University of Education, Hue University  
34 Le Loi, Hue City, Thua Thien Hue 49000, Viet Nam  
E-mail: duongtuanquang@gmail.com.  
Pham Cam Nam  
The University of Danang - University of Science and Education  
41 Le Duan, Hai Chau, Da Nang City 50000, Viet Nam  
© 2021 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH GmbH www.vjc.wiley-vch.de 210  
pdf 8 trang yennguyen 18/04/2022 1140
Bạn đang xem tài liệu "TD-DFT benchmark for UV-Vis spectra of coumarin derivatives", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

File đính kèm:

  • pdftd_dft_benchmark_for_uv_vis_spectra_of_coumarin_derivatives.pdf