Nghiên cứu pha chế chất phân tán dầu từ các hóa chất hoạt động bề mặt tổng hợp phù hợp với đặc trưng của dầu thô Việt Nam

HÓA - CHBIN DU KHÍ  
NGHIÊN CU PHA CHCHT PHÂN TÁN DU TCÁC HÓA CHT  
HOT ĐỘNG BMT TNG HP PHÙ HP VI ĐẶC TRƯNG  
CA DU THÔ VIT NAM  
TS. Phạm Thị Lê Na1, TS. Vũ Công Thắng2, ThS. Nguyễn Minh Khoa1  
ThS. Nguyễn Phương Thảo1, TS. Nguyễn Anh Đức1, TS. Lê Xuân Đại3  
KS. Trần Hồng Phong4  
1Viện Dầu khí Việt Nam  
2Đại học Dầu khí Việt Nam  
3Đại học Bách khoa Tp. Hồ Chí Minh  
4Liên doanh Việt - Nga “Vietsovpetro”  
Email: naptl.cpse@vpi.pvn.vn  
Tóm tắt  
Dầu thô Việt Nam có hàm lượng paraffin rắn và nhiệt độ đông đặc khá cao nên một số chất phân tán thương mại  
đang sử dụng tại Việt Nam chưa thật sự hiệu quả trong xử lý dầu tràn. Bài báo giới thiệu nghiên cứu pha chế chất phân  
tán dầu từ các chất hoạt động bề mặt phổ biến cho hiệu quả phân tán cao hơn các chất phân tán thương mại hiện có  
(tối thiểu đạt 40%) đối với dầu thô của Việt Nam (đại diện là dầu thô khai thác từ mỏ Bạch Hổ, Đại Hùng, Trường Sơn -  
Sông Đốc), đồng thời thân thiện với môi trường. Nhóm tác giả cũng đánh giá sơ bộ về hiệu quả kinh tế của chất phân  
tán pha chế được để bước đầu có cơ sở sản xuất với số lượng lớn phục vụ công tác ứng phó sự cố tràn dầu của Tập đoàn  
Dầu khí Việt Nam nói chung và các nhà thầu hoạt động dầu khí nói riêng.  
Từ khóa: Chất hoạt động bề mặt, chất phân tán, ứng phó sự cố tràn dầu.  
1. Giới thiệu  
Sự cố tràn dầu gây thiệt hại nghiêm trọng về kinh tế -  
độc hại đối với nhiều sinh vật. Tham số quan trọng nhất  
của chất hoạt động bề mặt là hệ số cân bằng ưa nước - ưa  
dầu (HLB). Các chất hoạt động bề mặt có thể dùng làm  
chất phân tán cần có HLB từ 9 - 11. Nhiều chất hoạt động  
bề mặt được phối hợp với nhau theo tỷ lệ nhất định để tạo  
thành chất phân tán có HLB mong muốn có hiệu quả cho  
một nhóm đối tượng dầu, sản phẩm dầu nhất định. Các  
dung môi tiêu biểu gồm phân đoạn chưng cất dầu nhẹ,  
dầu hỏa, ethylene glycol, dipropylene glycol monobutyl  
ether, nước biển.  
xã hội, trở thành mối đe dọa đối với môi trường nói chung  
và các hệ sinh thái nói riêng. Dầu tràn làm thay đổi tính  
chất lý hóa của môi trường nước, tăng độ nhớt, giảm nồng  
độ oxy hấp thụ vào nước... dẫn đến thiệt hại nghiêm trọng  
về sinh vật biển, đặc biệt là các rạn san hô và các loại sinh  
vật nhạy cảm với sự thiếu oxy. Do vậy, việc giảm thiểu ô  
nhiễm môi trường do sự cố tràn dầu là mối quan tâm lớn  
mang tính toàn cầu.  
Các cơ sở ứng phó sự cố tràn dầu và các nhà thầu hoạt  
động dầu khí tại Việt Nam cũng dự trữ một lượng chất  
phân tán dầu nhất định. Tuy nhiên, một số chất phân tán  
dầu đang được cho phép sử dụng tại Việt Nam có hiệu quả  
phân tán không cao đối với một số loại dầu thô Việt Nam,  
đặc biệt là với dầu thô Bạch Hổ - loại dầu có trữ lượng lớn  
nhất và có hàm lượng paraffin lớn, nhiệt độ đông đặc cao  
(33 - 34oC). Chất phân tán được dùng nhiều nhất ở Việt  
Nam là Superdispersant 25 (SD-25) và Seagreen 805 cho  
hiệu quả phân tán 30 - 31% đối với dầu Bạch Hổ - Rồng.  
Hiệu quả phân tán của SD-25 đối với dầu Chim Sáo chỉ  
đạt 7% (bằng phương pháp bình lắc), trong khi đó theo  
tiêu chuẩn của Cục Bảo vệ Môi trường Hoa Kỳ (EPA) để có  
trong danh sách sử dụng để ứng cứu sự cố tràn dầu, hiệu  
quả phân tán phải đạt tối thiểu 45%.  
Chất phân tán có thành phần chủ yếu gồm các chất  
hoạt động bề mặt, dung môi và chất ổn định. Mỗi phân  
tử của chất hoạt động bề mặt có 1 đầu ưa nước (bị các  
phân tử nước hút) và 1 đầu kỵ nước (vừa đẩy nước vừa  
hút dầu). Khi phun chất phân tán lên dầu tràn, dung môi  
giúp chất hoạt động bề mặt thâm nhập vào dầu. Khi ở  
trong dầu, chất hoạt động bề mặt di chuyển đến nơi mà  
dầu gặp nước và định hướng tại giao diện của dầu - nước  
làm giảm sức căng bề mặt giữa dầu và nước, giúp cho  
dầu có thể phân tán vào trong nước dưới dạng các hạt  
nhũ tương. Các chất hoạt động bề mặt anion hay không  
ion hay được dùng làm chất phân tán, tiêu biểu như: các  
ester của các acid béo, của sorbitan, các muối của acid  
sulfosuccinic… Các chất hoạt động bề mặt cation không  
được sử dụng do thường chứa các muối amoni bậc 4 vốn  
DU KHÍ - S3/2015  
40  
PETROVIETNAM  
Đề tài nghiên cứu cấp Ngành “Nghiên cứu pha chế  
chất phân tán dầu từ các hóa chất hoạt động bề mặt tổng  
hợp phù hợp với đặc trưng dầu thô Việt Nam” được Viện  
Dầu khí Việt Nam thực hiện với mục tiêu nhằm tạo ra chất  
phân tán dầu có hiệu quả phân tán cao hơn các chất phân  
tán thương mại đang sử dụng tại Việt Nam và thân thiện  
với môi trường, phù hợp với đặc trưng dầu thô Việt Nam,  
góp phần nâng cao hiệu quả công tác ứng phó sự cố tràn  
dầu của Tập đoàn Dầu khí Quốc gia Việt Nam.  
Bài toán tối ưu được giải theo các bước sau:  
+ Tiến hành một số thí nghiệm thăm dò nhằm xác  
định miền giá trị của các biến theo tiêu chí cho hiệu quả  
phân tán dầu cao;  
+ Xác định phương trình hồi quy theo quy hoạch ma  
trận yếu tố toàn phần bằng phần mềm thống kê viết bằng  
ngôn ngữ Matlab;  
+ Thu hẹp vùng khảo sát của các yếu tố để thực hiện  
quy hoạch tối ưu hóa theo phương án quay bậc 2 của Box  
- Hunter bằng phần mềm thống kê viết bằng ngôn ngữ  
Matlab;  
2. Thực nghiệm  
2.1. Hóa chất, thiết bị  
- Tween 80, Span 80, Tween 85, AOT-75;  
+ Sử dụng phần mềm Statistica 10 để vẽ mặt tối ưu và  
xác định thành phần của hệ tối ưu.  
- Propylene glycol (PG), dipropylene glycol  
monobutyl ether (DPGMBE), kerosene, cyclohexane;  
- Phương pháp nghiên cứu thực nghiệm:  
- Nước  
dichloromethane (DCM);  
biển,  
sodium  
sulphate  
(Na2SO4),  
+ Phương pháp xác định hiệu quả phân tán dầu:  
sử dụng phương pháp bình lắc của EPA. Cho nước biển  
vào bình thử nghiệm, thêm dầu lên bề mặt nước biển  
bằng xilanh sau đó dùng micropipet cho chất phân tán  
đều trên bề mặt dầu, lắc trong 10 phút. Sau đó, để yên  
mẫu trong 10 phút, hứng bỏ 2ml nước đầu, lấy 30ml tiếp  
theo để chiết với dichloromethane, hứng phần chiết, định  
mức đến 25ml. Đo độ hấp thụ trên máy UV ở 3 bước sóng  
340nm, 370nm, 400nm, xác định lượng dầu phân tán vào  
nước và tính toán hiệu quả phân tán.  
- Dầu thô Bạch Hổ, Đại Hùng, Trường Sơn - Sông Đốc.  
- Thiết bị xác định hiệu quả phân tán dầu: Máy lắc  
với tốc độ 0 - 300 vòng/phút;  
- Bình tam giác có vòi 250ml, bình định mức 50ml,  
ống đong 50ml, micropipet 10 - 100μl, phễu chiết, xi lanh  
- Máy UV-Vis.  
2.2. Phương pháp nghiên cứu  
+ Phương pháp thử nghiệm độc trên ấu trùng tôm  
sú: Sinh vật thử nghiệm được tiếp xúc với môi trường có  
các nồng độ chất phân tán khác nhau. Đồng thời, thực  
hiện một mẫu đối chứng (không chứa chất thử nghiệm)  
để so sánh, sục khí nhẹ và không cho ăn trong thời gian  
thử nghiệm. Xác định số sinh vật sống sót sau mỗi 24 giờ  
cho đến khi kết thúc thí nghiệm (96 giờ). Dựa trên các số  
liệu thu được từ thử nghiệm, tính toán tỷ lệ ức chế ở các  
nồng độ thử nghiệm và các giá trị LC50 96 giờ. Sử dụng  
chương trình “BioStat 2008” để tính toán các giá trị LC50,  
khoảng tin cậy và vẽ đồ thị mối tương quan giữa nồng  
độ độc chất và tỷ lệ ức chế theo phân tích hồi quy. Độ tin  
cậy 95% của LC50 được xác định bằng phương pháp kiểm  
tra số dư.  
- Phương pháp thu thập, tổng hợp tài liệu: Tổng hợp  
tài liệu, thu thập thông tin về chất phân tán sử dụng ở Việt  
Nam và trên thế giới để biết được tỷ lệ và vai trò của các  
thành phần có trong chất phân tán. Tổng hợp các nghiên  
cứu liên quan đến đặc trưng của dầu thô Việt Nam để biết  
được sự khác biệt giữa dầu thô Việt Nam và dầu thô thế  
giới, từ đó có hướng cải thiện hiệu quả phân tán bằng  
cách thay đổi nồng độ các chất trong thành phần hay thay  
đổi dung môi.  
- Phương pháp quy hoạch, tối ưu hóa thực nghiệm  
bằng mô phỏng thống kê:  
Sử dụng phương pháp tối ưu hóa thống kê dựa trên  
quy hoạch ma trận nhiều yếu tố để tìm kiếm hệ chất hoạt  
động bề mặt cho hiệu quả phân tán cao đối với mẫu dầu  
thô. Thành phần thể tích của các chất hoạt động bề mặt  
được xem như là các biến thực nghiệm và hàm mục tiêu  
sẽ là giá trị hiệu quả phân tán dầu của hỗn hợp chất hoạt  
động bề mặt. Thành phần tối ưu của hệ chất hoạt động bề  
mặt được xác định khi hàm mục tiêu hiệu quả phân tán  
đạt giá trị cực đại.  
3. Kết quả nghiên cứu và thảo luận  
3.1. Tối ưu hóa hệ chất hoạt động bề mặt cho các mẫu  
dầu thô bằng quy hoạch thực nghiệm  
3.1.1. Tối ưu hóa hệ chất hoạt động bề mặt cho dầu Bạch Hổ  
Hệ chất hoạt động bề mặt gồm có (AOT, Span 80,  
Tween 80, Tween 85). Dựa trên tiêu chí về hiệu quả phân  
DU KHÍ - S3/2015  
41  
HÓA - CHBIN DU KHÍ  
tán cao khi tiến hành một số thí nghiệm thăm dò tỷ lệ hỗn  
hợp các chất hoạt động bề mặt, cố định tỷ lệ AOT : Span  
80 = 1 : 4. Để đơn giản, trong hệ 4 chất hoạt động bề mặt  
(AOT, Span 80, Tween 80, Tween 85), AOT và Span 80 được  
gộp lại thành một nhóm để tiến hành khảo sát bài toán tối  
ưu 3 yếu tố (3 cấu tử) theo hai mức.  
Chọn các khoảng giá trị của biến thực nghiệm tại  
miền dừng:  
Z1 = 55 - 45ml; Z2 = 15 - 25ml; Z3 = 25 - 35ml  
Giá trị cánh tay đòn và các thành phần phối trộn đều  
do chương trình tính toán và đưa ra.  
Bảng 1. Ma trận mã hóa của quá trình phối trộn hệ chất hoạt động bề mặt dành cho dầu  
Thí nghiệm theo quy hoạch ma trận yếu tố toàn phần  
thô Bạch Hổ theo phương pháp yếu tố toàn phần  
Để thực hiện quy hoạch cần ít nhất 23 = 8 thí nghiệm  
của ma trận yếu tố toàn phần và 3 thí nghiệm ở tâm.  
Thực hiện 11 thí nghiệm với các thể tích khác nhau của  
các chất hoạt động bề mặt, xác định hiệu quả phân tán  
của hỗn hợp chất hoạt động bề mặt bằng phương pháp  
bình lắc.  
Hiệu quả phân tán  
TT  
X1  
X2  
X3  
(%) = Y  
45,9  
37,7  
46,2  
38,1  
43,8  
46,6  
36,9  
38,1  
46,7  
46,3  
46,5  
1
2
3
4
5
6
7
8
9
-
+
-
+
-
+
-
+
0
0
0
-
-
+
+
-
-
-
-
-
+
+
+
+
0
0
0
-
- Yếu tố Z1 là thể tích của hỗn hợp {AOT : Span = 1 : 4};  
- Yếu tố Z2 là thể tích của Tween 80;  
+
+
0
0
0
- Yếu tố Z3 là thể tích của Tween 85;  
10  
11  
Mỗi yếu tố Z biến thiên theo 2 mức (mức trên và mức  
dưới). Sau khi mã hóa biến thực nghiệm Z thành biến mã  
X thì mức trên là +1, mức dưới là -1.  
Bảng 2. Điều kiện thí nghiệm cho quá trình tối ưu hóa  
Các yếu tố ảnh hưởng  
Mức  
AOT + Span Tween 80  
Tween 85  
Ma trận mã hóa và các giá trị thực nghiệm của quá  
trình phối trộn hệ chất hoạt động bề mặt theo phương  
pháp yếu tố toàn phần được tóm tắt như sau:  
80 (ml)  
55  
(ml)  
25  
(ml)  
35  
30  
Mức trên (+1)  
Mức cơ sở (0)  
50  
20  
Mức dưới (-1)  
Khoảng biến thiên  
45  
10  
15  
10  
25  
10  
Tiến hành tối ưu hóa hệ chất hoạt động bề mặt trên  
phần mềm thống kê viết bằng ngôn ngữ Matlab và kết  
quả của quy hoạch tuyến tính theo ma trận toàn phần 3  
yếu tố 2 mức cho phương trình:  
Bảng 3. Kết quả thí nghiệm theo phương pháp quay bậc 2 Box - Hunter đối với hệ chất  
hoạt động bề mặt tối ưu với dầu thô Bạch Hổ  
Hiệu quả  
Y = 111,9625 - 2,1875Z1 + 2,4225Z2 - 3,5275Z3 -  
0,0075 Z1Z2 + 0,1015 Z1Z3 - 0,0805 Z2Z3  
TT  
X1  
X2  
X3  
phân tán  
(%) = Y  
41,3  
43,6  
42,7  
44,5  
42,9  
45,4  
41,8  
40,5  
42,7  
44,1  
40,2  
43,4  
42,8  
43,1  
46,3  
46,2  
46,4  
46,3  
46,4  
46,3  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
+
+
+
+
-
-
-
-
- α  
+α  
0
0
0
0
0
0
0
+
+
-
+
-
+
-
+
-
+
-
0
0
0
0
-α  
+α  
0
0
0
0
0
0
Phương trình này được tự động kiểm tra là tương  
thích với thực nghiệm (theo chuẩn Fisher).  
-
Như vậy, với quy hoạch ma trận yếu tố toàn phần đã  
kiểm chứng kết quả thực nghiệm tương thích với phương  
trình lý thuyết trong vùng khảo sát được chọn ban đầu. Từ  
đó, có thể thu hẹp vùng khảo sát của các yếu tố để thực  
hiện quy hoạch tối ưu hóa theo phương án quay bậc 2 của  
Box - Hunter.  
+
+
-
-
0
0
-α  
+α  
0
0
0
0
0
0
0
0
Thí nghiệm theo quy hoạch tối ưu hóa theo phương án  
quay bậc 2 của Box- Hunter  
Nhóm tác giả tiếp tục thực hiện 20 thí nghiệm khác  
nhau (Bảng 3) theo phương án quay (dãy thí nghiệm ma  
trận yếu tố toàn phần gồm 8 thí nghiệm; dãy thí nghiệm  
ma trận ở cánh tay đòn gồm 6 thí nghiệm; dãy thí nghiệm  
ma trận ở tâm phương án gồm 6 thí nghiệm).  
0
0
0
DU KHÍ - S3/2015  
42  
PETROVIETNAM  
Tiến hành tối ưu hóa hệ chất hoạt động bề mặt trên phần  
mềm thống kê viết bằng ngôn ngữ Matlab và kết quả của quy  
hoạch tối ưu hóa theo phương án quay bậc 2 của Box - Hunter  
cho phương trình:  
Xây dựng bề mặt tối ưu  
Sử dụng phần mềm Statistica để vẽ mặt tối ưu  
(Hình 1).  
Phần mềm Statistica cho kết quả về hệ tối ưu  
tương thích với kết quả tính toán trên.  
y = 6,3058 + 0,2822 x1 + 0,6650 x2 − 0,3511 x3 − 1,0375 x1x2 −  
(1)  
0,3625 x1x3 − 0,5375 x2x3 − 0,9596 x12  
− 1,5251 x22 − 1,1186 x32  
3.1.2. Tối ưu hóa hệ chất hoạt động bề mặt cho dầu  
thô Đại Hùng  
Phương trình này được tự động kiểm tra là tương thích với  
thực nghiệm.  
Tiến hành tương tự các bước quy hoạch thực  
nghiệm đối với dầu thô Đại Hùng.  
Chuyển phương trình trong hệ biến mã hóa về phương trình  
trong hệ biến thực nghiệm với công thức liên hệ giữa biến mã hóa  
và biến thực nghiệm:  
Phương trình hồi quy thu được cho hệ chất hoạt  
động bề mặt của dầu thô Đại Hùng như sau:  
Zi Zi0  
∆Zi  
Zimax + Zimin  
(2)  
xi =  
y = − 187, 3263+ 5,5560 Z1 + 5,2209 Z2 +  
3,7073 Z3 − 0,0390 Z1Z2 − 0,0210 Z1Z3 −  
Zi0 =  
Trong đó:  
và  
(3)  
(4)  
2
− 0,0399 Z12 − 0,0689 Z22 − 0,0435 Z32  
0,0130 Z2Z3  
Zimax − Zimin  
∆Zi =  
Phương trình hồi quy thể hiện mức độ tương tác  
gữa các thành phần trong chất phân tán cho thấy,  
AOT là chất hoạt động bề mặt đóng vai trò quan  
trọng đối với khả năng phân tán của chất phân tán  
đối với dầu thô Đại Hùng do hệ số trước Z1 trong  
phương trình hồi quy cao so với các hệ số còn lại.  
2
Thay các giá trị mã hóa vào, từ phương trình (1) tìm được  
phương trình theo biến thực Z:  
y = −193 ,8523+5,1598 Z1+5,2932 Z2+3,7695 Z30,0415 Z1Z2−  
0,0145 Z Z − 0,0215 Z Z 0,0384 Z2  
1 − 0,0610 Z22 − 0,0447 Z23  
1
3
2
3
Phần mềm thống kê cho giá trị cực trị của hiệu quả phân tán  
là Y = 46,43% tại:  
Hiệu quả phân tán tối ưu tại các giá trị: Z1 =  
52,51ml; Z2 = 20,49ml; Z3 = 26,91ml. Hiệu quả phân  
tán tối ưu đạt 61,89%.  
Z1 = 50,30ml; Z2 = 21,18ml; Z3 = 28,88ml  
Kết quả tính toán tương thích với thực nghiệm khi tiến hành  
thêm một số thí nghiệm để kiểm tra.  
Tỷ lệ hệ chất hoạt động bề mặt tối ưu cho dầu  
thô Đại Hùng được thể hiện trong Bảng 4.  
Như vậy, tỷ lệ hệ chất hoạt động bề mặt tối ưu đối với dầu thô  
Bạch Hổ được thể hiện trong Bảng 4.  
3.1.3. Tối ưu hóa hệ chất hoạt động bề mặt cho dầu  
thô Trường Sơn - Sông Đốc  
Phương trình hồi quy cho thấy sự tương tác giữa các chất hoạt  
động bề mặt và vai trò của từng chất hoạt động bề mặt với hiệu  
quả phân tán. Đối với dầu thô Bạch Hổ, dầu nhóm paraffin thì AOT  
và Tween 80 đóng vai trò chủ đạo trong quá trình phân tán dầu.  
Các bước quy hoạch thực nghiệm được tiến  
hành tương tự như đối với dầu thô Bạch Hổ  
y = 136,4238+ 3,5433 Z1+ 6,7855 Z2+1,2685 Z3−  
0,0960 Z1Z2+ 0,0250 Z1Z3 + 0,0250 Z2Z3 −  
0,0133 Z21 − 0,0529 Z22 − 0,0628 Z32  
Phương trình hồi quy thu được cho hệ chất hoạt  
động bề mặt của dầuTrường Sơn - Sông Đốc như sau:  
Phương trình hồi quy cho thấy, đối với dầu thô  
Trường Sơn - Sông Đốc là dầu thuộc nhóm dầu  
trung gian paraffin-naphtha thì trong mối tương  
quan giữa các thành phần chất phân tán, chất hoạt  
động bề mặt Tween 80 có vai trò chủ đạo trong quá  
trình phân tán dầu.  
Hiệu quả phân tán cực đại tại các giá trị: Z1 =  
42,26ml; Z3 = 31,66ml; Z2 = 24,81ml; HQPTmax= 61,60%  
Hình 1. Bề mặt tối ưu của hệ chất hoạt động bề mặt dành cho dầu thô Bạch Hổ  
DU KHÍ - S3/2015  
43  
HÓA - CHBIN DU KHÍ  
Tỷ lệ hệ chất hoạt động bề mặt tối ưu cho dầu thô  
Trường Sơn - Sông Đốc được thể hiện trong Bảng 4.  
Với Z1 = Thể tích hệ hoạt động bề mặt, khoảng biến thiên  
70 - 80ml;  
Z2 = Thể tích Kerosene, khoảng biến thiên 5 - 10ml;  
Z3 = Thể tích Cyclohexane, khoảng biến thiên 5 - 10ml;  
Z4 = Thể tích hệ (DPGMBE : PG), khoảng biến thiên 5 - 15ml;  
3.2. Xác định dung môi phù hợp, nồng độ dung môi  
và chất ổn định tối ưu  
Dung môi và chất ổn định được lựa chọn gồm:  
Kerosene; Cyclohexane; Propylene glycol (PG),  
Dipropylene glycol monobutyl ether (DPGMBE).  
Phương trình hồi quy về mối liên hệ giữa thành phần chất  
phân tán với hiệu quả phân tán dành cho dầu thô Bạch Hổ thu  
được như sau:  
Nhóm tác giả đã tiến hành một số thí nghiệm  
thăm dò để xác định khoảng nồng độ tối ưu của các  
chất như:  
y = 109,0062− 0,8712 Z1 − 2,5025 Z2 − 2,9225 Z3 − 0,2925 Z4 +  
+ 0,0018 Z1Z4 − 1,6061 Z2Z3 −  
0,0475 Z1Z2 + 0,0255 Z1Z3  
0,0795 Z2Z4 + 0,0605 Z3Z4  
- Xác định hiệu quả phân tán của hệ chất hoạt  
động bề mặt với Kerosene;  
Từ kết quả tính toán của phần mềm toán học, hiệu quả phân  
tán đạt giá trị lớn nhất là 47,80%.  
- Xác định hiệu quả phân tán của hệ chất hoạt  
động bề mặt với Cyclohexane;  
Tỷ lệ tối ưu của các chất trong thành phần chất phân tán cho  
dầu thô Bạch Hổ được thể hiện trong Bảng 6.  
- Xác định hiệu quả phân tán của hệ chất hoạt  
động bề mặt với DPGMBE;  
3.2.2. Tối ưu thành phần chất phân tán cho dầu thô Đại Hùng  
- Xác định hiệu quả phân tán của hệ chất hoạt  
động bề mặt với DPGMBE, PG;  
Phương trình hồi quy cho dầu thô Đại Hùng:  
- Xác định hiệu quả phân tán của hệ chất hoạt  
Bảng 4. Tỷ lệ hệ chất hoạt động bề mặt tối ưu cho một số loại dầu thô Việt Nam  
động bề mặt với Kerosene, cyclohexane;  
Tỷ lệ hệ chất hoạt động bề mặt tối ưu (%)  
TT Loại dầu thô  
AOT  
40,09  
42,05  
Span 80  
10,02  
Tween 80 Tween 85  
- Xác định hiệu quả phân tán của hệ chất hoạt  
động bề mặt với Kerosene, cyclohexane, DPGMBE.  
1
2
Bạch Hổ  
Đại Hùng  
21,10  
20,51  
28,78  
26,93  
10,51  
Trường Sơn -  
Sông Đốc  
- Kết quả các thí nghiệm thăm dò cho thấy  
khoảng biến thiên về tỷ lệ của các chất như sau:  
3
34,24  
8,56  
25,13  
32,09  
Bảng 5. Kết quả thí nghiệm tìm thành phần tối ưu để pha chế chất phân tán cho dầu thô Bạch Hổ  
- Kerosene (5 - 10%);  
Hiệu quả phân  
- Cyclohexane (5 - 10%);  
TT  
Z1  
Z2  
Z3  
Z4  
tán (%) = Y  
43,4  
39,1  
46,3  
46,7  
41,9  
42,3  
37,4  
38,1  
44,3  
38,6  
39,8  
37,5  
38,7  
37,2  
35,7  
39,1  
47,2  
47,7  
47,5  
47,3  
- PG, DPGMBE (5 - 15%), tỷ lệ các chất trong hệ  
tối ưu khi DPGMBE : PG = 2:1.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
-
+
-
+
-
-
-
+
+
-
+
-
+
-
-
+
-
+
-
+
+
0
0
0
0
-
-
-
-
5
-
-
-
-
-
-
+
+
+
+
+
+
+
+
0
0
0
0
Để xác định thành phần tối ưu của chất phân  
tán, nhóm tác giả sử dụng phương pháp tối ưu hóa  
bằng quy hoạch thực nghiệm tương tự như trên, xây  
dựng phương trình hồi quy cho hệ:  
-
+
+
+
+
-
+
-
-
+
+
-
+
0
0
0
0
-
+
+
-
-
-
 Chất hoạt động bề mặt: 70 - 80%;  
 Dung môi, chất ổn định:  
- Kerosene (5 - 10%);  
+
-
- Cyclohexane (5 - 10%);  
- PG, DPGMBE (5 - 15%).  
+
+
+
0
0
0
0
3.2.1. Tối ưu thành phần chất phân tán cho dầu thô  
Bạch Hổ  
Bảng 5 thể hiện kết quả thực nghiệm tối ưu  
thành phần chất phân tán cho dầu thô Bạch Hổ.  
DU KHÍ - S3/2015  
44  
PETROVIETNAM  
Bảng 6. Tỷ lệ tối ưu của các chất trong thành phần chất phân tán cho một số loại dầu thô Việt Nam  
Tỷ lệ tối ưu các chất trong thành phần chất phân tán (%)  
TT  
Loại dầu thô  
Bạch Hổ  
Đại Hùng  
Trường Sơn - Sông Đốc  
Chất hoạt động  
bề mặt  
Kerosene  
Cyclohexane  
DPGMBE  
PG  
1
2
3
70,49  
73,56  
73,44  
8,83  
7,05  
5,20  
9,27  
8,87  
11,41  
7,61  
7,02  
6,63  
3,80  
3,51  
3,31  
dầu thô Bạch Hổ tại nhiệt độ môi trường 30oC, tốc độ lắc  
200 vòng/phút.  
y = 138,50000,9250 Z1 3,9600 Z2 − 2,1100 Z3 −  
0,2750 Z4 + 0,0700 Z1Z2 + 0,0210 Z1Z3 − 0,0020 Z1Z4 −  
0,0860 Z2Z3 − 0,0540 Z2 Z4 + 0,0630 Z3Z4  
Ymax (HQPTmax) = 67,33%  
Kết quả khảo sát (Hình 2) cho thấy hiệu quả phân  
tán tăng khi tăng tỷ lệ chất phân tán/dầu. Tuy nhiên, khi  
tăng tỷ lệ từ 1/20 lên 1/10, hiệu quả phân tán tăng nhưng  
không đáng kể. Do đó, để đảm bảo an toàn cho môi  
trường sinh thái biển nên sử dụng tỷ lệ phun chất phân  
tán/dầu là 1/20.  
Tỷ lệ tối ưu các chất trong thành phần chất phân tán  
cho dầu thô Đại Hùng được thể hiện trong Bảng 6.  
3.2.3. Tối ưu thành phần chất phân tán cho dầu thô Trường  
Sơn - Sông Đốc  
3.3.2. Khảo sát ảnh hưởng của tốc độ lắc đến hiệu quả phân tán  
Phương trình hồi quy thu cho dầu thô Trường Sơn -  
Sông Đốc:  
Các tốc độ lắc khác nhau của máy lắc được thiết lập để  
khảo sát ảnh hưởng của năng lượng khuấy trộn lên hiệu  
quả phân tán dầu. Năng lượng khuấy trộn cao làm tốc độ  
phá vỡ các giọt dầu tăng, do đó làm tăng hiệu quả phân  
tán (Hình 3).  
y = 194,6738−1,5975 Z1 1,7820 Z2 − 6,7225 Z3 −  
4,0762 Z4 + 0,0190 Z1 Z2+ 0,0700 Z1Z3 + 0,0525 Z1Z 4 +  
0,1080 Z2 Z3 − 0,1050 Z2 Z4+ 0,0275 Z3 Z4  
3.3.3. Khảo sát ảnh hưởng của nhiệt độ đến hiệu quả phân tán  
Y
max (HQPTmax) = 66,70 %  
Để khảo sát ảnh hưởng của nhiệt độ đến hiệu quả  
phân tán, nhóm tác giả đã tiến hành các thử nghiệm  
Tỷ lệ tối ưu các chất trong thành phần chất phân tán  
cho dầu thô Trường Sơn - Sông Đốc được thể hiện trong  
Bảng 6.  
60  
52,6  
47,6  
3.3. Ảnh hưởng của tỷ lệ chất phân tán/dầu, tốc độ lắc,  
nhiệt độ môi trường lên hiệu quả phân tán  
50  
41,8  
40  
32,7  
28,4  
30  
Dầu thô Bạch Hổ được lựa chọn để khảo sát ảnh  
hưởng của các yếu tố lên hiệu quả phân tán.  
20  
10  
0
3.3.1. Khảo sát ảnh hưởng của tỷ lệ chất phân tán/dầu lên  
hiệu quả phân tán  
60 vòng/phút  
150vòng/phút  
250 vòng/phút  
Thử nghiệm để khảo sát ảnh hưởng của tỷ lệ chất  
phân tán/dầu lên hiệu quả phân tán được thực hiện với  
Hình 3. Ảnh hưởng của tốc độ lắc đến hiệu quả phân tán  
70  
60  
50  
40  
30  
20  
10  
0
60  
51,2  
58,3  
47,6  
50  
47,6  
40  
30  
18,3  
20  
20,8  
10  
0
Tỷ lệ 1/50  
Tỷ lệ 1/20  
Tỷ lệ 1/10  
25oC  
30oC  
35oC  
Hình 2. Ảnh hưởng của tỷ lệ chất phân tán/dầu lên hiệu quả phân tán  
Hình 4. Ảnh hưởng của nhiệt độ đến hiệu quả phân tán  
DU KHÍ - S3/2015  
45  
HÓA - CHBIN DU KHÍ  
với dầu thô Bạch Hổ ở 3 mức nhiệt độ: 25oC, 30oC,  
35oC, tỷ lệ chất phân tán/dầu là 1/20, tốc độ lắc 200  
vòng/phút.  
3.4. Khảo sát độ độc cấp tính của chất phân tán pha  
chế được  
Lựa chọn 3 chất phân tán cho hiệu quả tối ưu nhất  
với dầu thô Bạch Hổ với thành phần được xác định từ  
quy hoạch thực nghiệm ở trên và tiến hành xác định  
độ độc cấp tính trên ấu trùng tôm sú trên pha nước.  
Từ kết quả ghi nhận được, chất phân tán pha chế  
được cũng như SD-25 thuộc nhóm C - nhóm có độ  
độc trung bình theo thang phân loại của OCNS. Trong  
đó thứ tự độ độc được sắp xếp tăng dần như sau:  
CPT1 <SD-25 < CPT2 < CPT3.  
Hình 5. Kết quả thử nghiệm độ độc của một số chất phân tán  
Sodium dioctyl  
Cồn  
sulfosuccinate  
ethanol  
Máy trộn  
Như vậy, CPT1 có độ độc thấp nhất sẽ được lựa  
chọn để thử nghiệm ngoài hiện trường. Chất phân  
tán này có thành phần về thể tích như sau: 7,06%  
Span 80; 14,87% Tween 80; 28,29% Tween 85; 28,27%  
AOT; 7,61% DPGMBE; 3,8% PG; 8,83% Kerosene; 9,27%  
Cyclohexane. Chất phân tán này được đặt tên là CPT-  
CPSE để tiện theo dõi.  
Span 80  
Tween 80  
Tween 85  
Kerosene  
Cyclohexane  
Propylene glycol  
Dipropylene Glycol monobuthyl ether  
AOT  
Máy trộn  
3.5. Dây chuyền công nghệ pha chế chất phân tán  
Chất phân tán là hỗn hợp của các chất hoạt  
động bề mặt, dung môi và chất ổn định. Để pha chế  
chất phân tán dầu với quy mô nhỏ trong phòng thí  
nghiệm (từ 200l/mẻ trở xuống), quy trình và dụng  
cụ để pha chế tương đối đơn giản, chỉ cần sử dụng  
máy khuấy trộn để pha trộn các chất đã xác định  
thành phần với nhau trong thùng chứa thích hợp tùy  
theo dung lượng cần thiết. Máy khuấy giúp các chất  
dễ dàng trộn lẫn vào nhau tạo thành hỗn hợp đồng  
nhất. Quá trình pha chế được thực hiện trong phòng  
có tủ hút để bảo đảm an toàn theo quy trình pha chế  
như Hình 6.  
THÀNH  
PHẦN  
Hình 6. Sơ đồ pha chế chất phân tán  
Cánh tản tạo sóng  
Bơm áp lực  
3.6. Thử nghiệm hiện trường chất phân tán pha chế  
được và SD-25  
Cánh tản tạo sóng  
Đánh giá hiệu quả phân tán của CPT-CPSE và SD-  
25 trên dầu thô Bạch Hổ được thực hiện tại bể thử  
nghiệm của Liên doanh Việt - Nga “Vietsovpetro. Do  
dầu thô Bạch Hổ bị vón cục khi nhiệt độ môi trường  
thấp nên nhóm tác giả tiến hành thử nghiệm trong  
thời gian từ 10 - 14 giờ.  
Hình 7. Mô hình bể thử nghiệm của Vietsovpetro  
Mặt nước  
Bơm áp lực  
Cánh tản (lưỡi gà)  
chuyển động lên  
xuống tạo sóng  
1m  
Bể thử nghiệm của Vietsovpetro có kích thước  
4m x 5m, chiều cao 1,5m, nước biển được đổ vào bể  
Hình 8. Mô hình cắt ngang của bể thử nghiệm  
DU KHÍ - S3/2015  
46  
PETROVIETNAM  
đến độ cao khoảng 50cm. Mô hình bể thử  
nghiệm hiệu quả phân tán của Vietsovpetro  
có thể mô phỏng các điều kiện tương  
đương với điều kiện biển tự nhiên. Sóng và  
dòng chuyển động mô phỏng dòng chảy  
được tạo bằng máy bơm cứu hỏa, sử dụng  
2 vòi phun bằng lăng giá D19, tấm chắn  
(cánh tản) dạng lưỡi gà điều khiển đặt trước  
dòng phun và được gắn vào 2 thành của bể  
để tạo sóng. Tại các mức sóng trung bình  
và mạnh, dưới tác dụng của dòng chảy, dầu  
khó tập trung thành mảng với diện tích lớn.  
Do đó, để có thể quan sát hiệu quả phân  
tán dầu trên diện rộng, nhóm tác giả đã tiến  
hành thử nghiệm tại mức sóng 0,6 - 1m,  
tương đương với vận tốc gió 5 - 8m/s, cấp  
III - IV (theo thang Beaufort). Mô hình bể thí  
nghiệm được mô tả như Hình 7.  
Bề mặt dầu sau 2 phút khi phun SD-25  
Bề mặt dầu sau 2 phút khi phun CPT-CPSE  
Bề mặt dầu sau 5 phút khi phun SD-25  
Bề mặt dầu sau 5 phút khi phun CPT-CPSE  
3.6.1. Quy trình thử nghiệm  
Bơm 10m3 nước vào bể thử nghiệm.  
Tạo sóng bằng bơm áp lực, tiến hành đổ  
khoảng 20l dầu thô Bạch Hổ còn tươi xuống  
bể, độ dày lớp dầu khoảng 2mm. Chất phân  
tán được pha loãng với nước biển theo tỷ  
lệ 1:10 trước khi đưa vào máy phun. Sau  
khi đã đổ dầu, chất phân tán được phun  
lên dầu với tỷ lệ chất phân tán/dầu là 1/20.  
Sau khi phun chất phân tán, quan sát sự  
biến đổi của lớp dầu trên bề mặt, lấy mẫu  
dầu phân tán vào cột nước khi kết thúc thử  
nghiệm (sau 30 phút kể từ lúc phun chất  
phân tán) và tiến hành rải chất hấp phụ dầu  
(cellusorb) lên dầu, dùng vợt để thu gom  
dầu trên bề mặt.  
Bề mặt dầu sau 10 phút khi phun SD-25  
Bề mặt dầu sau 10 phút khi phun CPT-CPSE  
Hình 9. Biến đổi bề mặt của lớp dầu theo thời gian sau khi phun chất phân tán  
Hình 10. Sơ đồ vị trí lấy mẫu  
3.6.2. Đánh giá hiệu quả phân tán bằng trực  
quan  
70  
60,28  
60  
50  
Các chuyên gia của Vietsovpetro trong  
lĩnh vực ứng phó sự cố tràn dầu quan sát  
quá trình phân tán dầu trong 20 phút sau  
khi phun chất phân tán lên bề mặt dầu  
và đánh giá hiệu quả phân tán theo các  
thang đánh giá của Vương quốc Anh (cho  
điểm từ 1 - 4 tương ứng với mức độ dầu bị  
phân tán).  
44,41  
43,72  
40  
30  
20  
10  
0
SD-25  
25,16  
CPT-CPSE  
CPT pha loãng với nước biển  
CPT đậm đặc  
Kết quả thử nghiệm cho thấy 5 phút sau  
Hình 11. So sánh hiệu quả phân tán của các chất khi xác định nồng độ dầu phân tán vào trong cột nước  
khi phun chất phân tán SD-25, dầu mới bắt  
DU KHÍ - S3/2015  
47  
HÓA - CHBIN DU KHÍ  
đầu tạo nhũ nâu vàng và bị phân tán thành các hạt nhỏ.  
Trong khi đó, 2 phút sau khi phun CPT-CPSE, dầu nhanh  
chóng tạo nhũ vàng và bị phân tán thành những giọt nhỏ,  
tạo bọt (Hình 9).  
Hiệu quả phân tán đối với dầu thô Bạch Hổ theo  
phương pháp xác định nồng độ dầu phân tán vào trong  
cột nước được trình bày trong Hình 11.  
Kết quả phân tích mẫu cho thấy, hiệu quả phân tán  
của CPT-CPSE đối với dầu thô Bạch Hổ cao hơn so với SD-  
25 khi phun chất phân tán ở dạng pha loãng với nước  
biển hay phun đậm đặc từ 1,3 - 1,7 lần.  
Theo đánh giá của Vietsovpetro, tốc độ phân tán của  
CPT-CPSE nhanh và cao hơn so với chất phân tán SD-25.  
Nhóm tác giả cũng tiến hành thử nghiệm thêm để so sánh  
trong điều kiện không pha loãng SD-25 mà phun trực  
tiếp. Kết quả cho thấy hiệu quả phân tán của SD-25 đậm  
đặc tương đương với hiệu quả phân tán của CPT-CPSE khi  
pha loãng 10 lần với nước biển. Như vậy, để phun chất  
phân tán lên một diện tích dầu như nhau thì lượng SD-25  
cần phải dùng lớn hơn lượng CPT-CPSE rất nhiều. Xét về  
mặt kinh tế và an toàn môi trường, điều này không có lợi.  
3.7. So sánh hiệu quả phân tán và giá trị kinh tế của CPT-  
CPSE với SD-25  
3.7.1. So sánh chất phân tán pha chế được với một số chất  
phân tán hiện có về hiệu quả phân tán  
Để so sánh hiệu quả phân tán của CPT-CPSE với một  
số chất phân tán hiện có trong phòng thí nghiệm CPSE,  
nhóm tác giả đã khảo sát hiệu quả phân tán của các  
chất ở cùng điều kiện thí nghiệm: tốc độ lắc 200 vòng/  
phút, nhiệt độ môi trường 30oC, tỷ lệ chất phân tán/dầu  
= 1/20. Kết quả thí nghiệm được biểu diễn trong Hình 12  
và Hình 13.  
3.6.3. Xác định hiệu quả phân tán bằng phương pháp định  
lượng  
Hiện nay, chưa có phương pháp nào để xác định chính  
xác hiệu quả phân tán dầu khi thử nghiệm hiện trường.  
Mọi kết quả tính toán chỉ mang tính tương đối. Khi phun  
chất phân tán lên bề mặt dầu, một phần dầu bị phân tán  
đi vào cột nước dưới lớp dầu. Dùng dụng cụ chuyên dụng  
để lấy mẫu nước dưới lớp dầu bề mặt tại 5 vị trí của bể  
(Hình 10).  
Từ kết quả ghi nhận được có thể thấy chất phân tán  
do nhóm tác giả nghiên cứu pha chế có ưu thế về hiệu  
quả phân tán đối với nhiều mẫu dầu so với những chất  
phân tán khác.  
Mẫu nước được bảo quản và đem về phân tích trong  
phòng thí nghiệm. Dầu được chiết bằng DCM. Lượng dầu  
trong phần chiết được xác định bằng cách đo trên máy  
huỳnh quang RF.  
3.7.2. So sánh hiệu quả kinh tế của CPT-CPSE với một số chất  
phân tán đang sử dụng tại Việt Nam  
Tại Việt Nam, Công ty Dầu khí Việt - Nhật dự trữ chất  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
67,3  
66,7  
70  
60  
50  
40  
30  
20  
10  
0
63,1  
52,8  
47,6  
Dầu Bạch Hổ  
18,7  
SD-25  
CPT-CPSE  
Dầu Đại Hùng  
Dầu Trường Sơn -  
Sông Đốc  
Tê Giác Đại Chim Hải Sư Bạch Trường  
Sơn-  
Sông  
Đốc  
Trắng  
Hùng Sáo Trắng Hổ  
Các loại dầu thô  
Hình 12. So sánh hiệu quả phân tán của CPT-CPSE với SD-25 trên một số mẫu dầu thô  
Hình 13. So sánh hiệu quả phân tán của các chất phân tán hiện có với CPT-CPSE trên  
mẫu dầu thô Bạch Hổ, Đại Hùng và Trường Sơn - Sông Đốc  
Bảng 7. So sánh giá thành và hiệu quả phân tán của giữa SD-25 và CPT-CPSE đối với dầu Bạch Hổ  
Chất phân tán  
Hiệu quả phân tán trong phòng thí nghiệm (tại tỷ lệ chất phân  
tán/dầu = 1/20) khi tối ưu về mặt kỹ thuật  
Hiệu quả phân tán khi tối ưu về mặt kinh tế  
Đơn giá tối ưu về mặt kỹ thuật (VNĐ/lít)  
CPT-CPSE  
SD-25  
47,6%  
30,3%  
43,6%  
184.893  
177.630  
30,3%  
185.200  
185.200  
Đơn giá tối ưu về mặt kinh tế (VNĐ/lít)  
DU KHÍ - S3/2015  
48  
PETROVIETNAM  
phân tán Seagreen 805 và Seacare OSD để ứng phó sự  
cố tràn dầu, còn các nhà thầu dầu khí khác chủ yếu dự  
trữ SD-25 có giá nhập khẩu tương đối cao, khoảng 8,5 -  
8,7USD/lít.  
Dầu thô Bạch Hổ thuộc nhóm dầu paraffin, AOT là  
chất hoạt động bề mặt đóng vai trò quan trọng đối với khả  
năng phân tán của chất phân tán. Và dung môi kerosene,  
cyclohexane cũng làm tăng khả năng phân tán dầu, có vai  
trò ưu thế hơn so với các dung môi khác.  
Dựa trên tỷ lệ thành phần của các chất phân tán có thể  
tính toán chi phí hóa chất để pha chế mẻ 200 lít chất phân  
tán với quy mô phòng thí nghiệm. Chi phí để pha chế chất  
phân tán gồm: hóa chất, điện, nhân công, marketing và  
thuế kinh doanh. Giá thành sơ bộ để pha chế 1 lít chất  
phân tán khi tối ưu về mặt kinh tế (ít tốn chi phí pha chế  
nhất nhưng vẫn đảm bảo hiệu quả phân tán tối thiểu 40%  
đối với dầu Bạch Hổ) là 177.630 đồng.  
Dầu thô Đại Hùng và Trường Sơn - Sông Đốc thuộc  
nhóm dầu trung gian paraffin-naphtha thì trong mối  
tương quan giữa các thành phần chất phân tán, chất hoạt  
động bề mặt Tween 80 có vai trò chủ đạo trong quá trình  
phân tán dầu. Cyclohexane và DPGMBE chiếm ưu thế hơn  
so với các dung môi khác.  
Tài liệu tham khảo  
Kết quả Bảng 7 cho thấy CPT-CPSE có ưu thế hơn so  
với SD-25 cả về mặt kinh tế và kỹ thuật. Mặt khác, SD-25  
thường phải sử dụng gần như ở dạng đậm đặc mới cho  
hiệu quả phân tán dầu thô Bạch Hổ cao tương đương CPT-  
CPSE đã pha loãng 10 lần với nước biển. CPT-CPSE có thể  
pha loãng với nước biển theo tỷ lệ (1:10) để phun và cho  
hiệu quả ngay khi phun lên bề mặt dầu tràn. Do đó, nếu  
dùng SD-25 sẽ tốn nhiều chất phân tán hơn để phun lên  
cùng diện tích dầu như nhau, do đó không có lợi về kinh  
tế và môi trường.  
1. European Maritime Safety Agency (EMSA). Manual  
on the applicability of oil spill dispersants (2nd edition). 2009.  
2. Environmental Protection Agency - Ghana. Oil spill  
dispersants guidelines. 2008.  
3. George Sorial, Subhashini Chandrasekar, James  
W.Weaver. Dispersant effectiveness data for a suite  
of environmental conditions - Effects of temperature,  
volatilization, and energy. EPA/600/R-04/119. 2004.  
4. Janne Lise Myrhaug Resby, Per Johan Brandvik,  
Per S.Daling, Julien Guyomarch (Cedre) and Ingvar Eide  
(Statoil). Effects of time on the effectiveness of dispersants.  
SINTEF Materials and Chemistry. 2007.  
4. Kết luận  
Từ kết quả nghiên cứu, nhóm tác giả đã pha chế được  
các chất phân tán phù hợp với dầu thô mỏ Bạch Hổ (đại  
diện cho bể Cửu Long), dầu thô mỏ Đại Hùng (đại diện  
cho bể Nam Côn Sơn), dầu thô mỏ Sông Đốc (đại diện cho  
bể Malay - Thổ Chu) và đạt hiệu quả phân tán tương ứng  
là 47,6%; 67,3%; 66,7%. Về hiệu quả phân tán đối với dầu  
Bạch Hổ, chất phân tán pha chế được CPT-CPSE có hiệu  
quả cao hơn so với SD-25 1,5 lần; cao hơn Sea Care 5 lần,  
cao hơn Sea Green 5,6 lần, cao hơn Shell VDC 10 lần, cao  
hơn Dasic Slickgone 2,5 lần. Đối với dầu thô Đại Hùng,  
hiệu quả phân tán của CPT-CPSE gấp 1,6 lần SD-25, gấp  
4,7 lần Sea Care, gấp 4 lần Sea Green và Shell VDC, gấp 1,7  
lần Dasic Slickgone. Với dầu thô mỏ Sông Đốc, hiệu quả  
phân tán của CPT-CPSE cao hơn SD-25 khoảng 1,4 lần, cao  
hơn Sea Care 3,8 lần, cao hơn Sea Green 3,2 lần, cao hơn  
Shell VDC 4,4 lần và cao hơn Dasic Slickgone 2,3 lần. Chất  
phân tán pha chế được thân thiện với môi trường, có độ  
độc cấp tính thấp hơn SD-25. Giá trị LC50 khi thử nghiệm  
độ độc trên ấu trùng tôm sú của CPT-CPSE là 44,57ppm,  
trong khi của SD-25 là 30,08ppm. Ngoài ra về hiệu quả  
kinh tế, tính trên quy mô sản xuất phòng thí nghiệm  
2.000 lít/ngày thì giá thành 1 lít chất phân tán CPT-CPSE  
là 177.630 đồng, thấp hơn giá bán thương mại của SD-25  
(185.200 đồng).  
5. Leigh Stevens. Guidelines for the use of oil spill  
dispersants. Prepared for Maritime New Zealand. Cawthron  
Report. 2006.  
6. Merv Fingas and Elise Decola. Oil spill dispersant  
effectiveness testing in OHMSETT. 2006.  
7. Merv Fingas. A white paper on oil spill dispersant  
effectiveness testing in large tanks. 2002.  
8. Oil Spill Respone. Role of dispersants in oil spill  
response. 2009.  
9. Bộ Khoa học, Công nghệ và Môi trường. Quy chế  
bảo vệ môi trường trong việc tìm kiếm, thăm dò, phát triển  
mỏ, khai thác, tàng trữ, vận chuyển, chế biến dầu khí và các  
dịch vụ liên quan. Quyết định số 395/1998/QĐ-BKHCNMT.  
20/4/1998.  
10. Bùi Minh Trí. Xác suất thống kê và Quy hoạch thực  
nghiệm. Nhà xuất bản Khoa học và Kỹ thuật. 2005.  
11. Nguyễn Minh Tuyển. Quy hoạch thực nghiệm.  
Nhà xuất bản Khoa học và Kỹ thuật. 2005.  
12. Nguyễn Đức Huỳnh, Hoàng Nguyên. Nghiên cứu  
DU KHÍ - S3/2015  
49  
HÓA - CHBIN DU KHÍ  
lựa chọn chất phân tán dầu (dispersant) thích hợp với môi  
trường biển Việt Nam nhằm phục vụ cho công tác phòng  
chống ô nhiễm dầu do các hoạt động thăm dò, khai thác  
dầu khí gây ra. Báo cáo tổng kết đề tài nghiên cứu khoa  
học. 1996.  
13. Vũ Công Thắng. Sử dụng hiệu quả chất phân tán  
dầu. Tạp chí Dầu khí. 2010; 12: trang 50 - 56.  
14. Vũ Công Thắng, Nguyễn Minh Khoa. Thử nghiệm  
hiệu quả của chất phân tán đối với dầu thô của mỏ Bạch Hổ  
- Rồng. Viện Dầu khí Việt Nam. 2007.  
Research on oil dispersant preparation from synthetic  
surfactants suitable for Vietnamese crude oil  
Pham Thi Le Na1, Vu Cong Thang2, Nguyen Minh Khoa1  
Nguyen Phuong Thao1, Nguyen Anh Duc1, Le Xuan Dai3  
Tran Hong Phong4  
1Vietnam Petroleum Institute  
2Petrovietnam University  
3Ho Chi Minh City University of Technology  
4Vietsovpetro  
Summary  
Vietnamese crude oil has a high content of solid paraffin and a high pour point so some commercial dispersants  
currently used in Vietnam are not really effective in the cleanup of oil spills. This paper presents a research on prepa-  
ration of oil dispersants from synthetic surfactants which are more effective (at least 40%) than the existing com-  
mercial dispersants on Vietnamese crude oil (especially crude oil from Bach Ho, Dai Hung, and Truong Son-Song Doc  
fields) and safe to the environment.The authors also made a preliminary assessment of the economic efficiency of the  
prepared dispersants to get information for big quantity production for oil spill response of Petrovietnam in general  
and of oil and gas contractors in particular.  
Key words: Surface active agents,surfactants, dispersants, oil spill response.  
DU KHÍ - S3/2015  
50  
pdf 11 trang yennguyen 16/04/2022 5620
Bạn đang xem tài liệu "Nghiên cứu pha chế chất phân tán dầu từ các hóa chất hoạt động bề mặt tổng hợp phù hợp với đặc trưng của dầu thô Việt Nam", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

File đính kèm:

  • pdfnghien_cuu_pha_che_chat_phan_tan_dau_tu_cac_hoa_chat_hoat_do.pdf