The photostimulated quantum effect in rectangular quantum wire with an infinite potential for the case of electron-acoustic phonon scattering

TẠP CHÍ KHOA HỌC SỐ 20/2017  
67  
THE PHOTOSTIMULATED QUANTUM EFFECT IN RECTANGULAR  
QUANTUM WIRE WITH AN INFINITE POTENTIAL FOR THE CASE  
OF ELECTRON-ACOUSTIC PHONON SCATTERING  
Nguyen Vu Nhan1, Hoang Dinh Trien2, Hoang Van Ngoc3  
1Hanoi Metropolitan University  
2The University of Da Nang  
3Hanoi University of Sciences, Hanoi National University  
Abstract: Based on the quantum kinetic equation for electrons under the action of a linearly  
polarized electromagnetic wave, a dc electric field and an intense laser field, analytic  
expressions for the density of the direct current in rectangular quantum wire with an  
infinite potential for the case of electron - acoustic phonon scattering are calculated. The  
current density is studied as a function of the frequency of the laser radiation field, the  
frequency of the linearly polarized electromagnetic wave, the temperature of system and  
the size of quantum wire. The analytic expressions are numerically evaluated and plotted  
for a specific quantum wire, GaAs/AlGaAs. All these results of quantum wire are compared  
with bulk semiconductors and superlattices to show the differences.  
Keywords: Semiconductors, quantum wells, quantum wires, superlattices and quantum dot.  
Email: nvnhan@daihocthudo.edu.vn  
Received 02 December 2017  
Accepted for publication 25 December 2017  
1. INTRODUCTION  
The photostimulated quantum effect by electromagnetic wave is explained by the  
possibility of using this phenomenon for detecting intense electromagnetic radiation, as well  
as for characterizing kinetic properties of semiconductors [1]. It is known that the presence  
of intense laser radiation can influence the electrical conductivity and kinetic effects in  
material. In recent years, it has been revealed that the photostimulated quantum effect in  
superlattices and in quantum wells should be characterized by new features under the action  
of strong fields [2-4]. However, in quantum wire, the photostimulated quantum effect still  
opens for studying.  
68  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ HÀ NỘI  
In this work, we use the quantum kinetic to study the drag of charge carriers in  
rectangular quantum wire with an infinite potential by a linearly polarized electromagnetic,  
a dc electric field and a laser field. We obtained the density of the current for the case  
electrons interacting with acoustic phonon.  
2. CALCULATING THE DENSITY OF THE CURRENT BY THE QUANTUM  
KINETIC EQUATION METHOD  
We examine the electron system, which is placed in a linearly polarized electromagnetic  
  
  
  
  
it  
E(t) E(e eit ),H(t) n,E(t)  
wave (  
), in a dc electric field  
and in a strong radiation field  
E0  
The Hamiltonian of the electron - phonon system in the quantum wire can be  
F(t) Fsin t.  
written as:  
e
H = H0 + U =  
C .I  
+
b b  
(pz A(t)).an,l,p .an,l,p  
n,l,pz  
q
q
q
z
z
c  
n,l,pz  
q
+
(q)an,l ,p q .an,l,p (bq bq )  
,
(1)  
   
n,l,n ,l  
   
q
s
z
n,l,n ,l pz ,q  
where A t is the vector potential of laser field (only the laser field affects the probability  
   
0
1
of scattering):  
; aand an,l,p (bqand bq) are the creation and  
A(t) F sin t  
n,l,pz  
z
c
q  
C
annihilation operators of electron (phonon);  
is the frequency of acoustic phonon; q is  
2q  
2vsV  
Cq2   
the electron-acoustic phonon interaction constant:  
, here V, , vs and  
are  
volume, the density, the acoustic velocity and the deformation potential constant; In',l',n,l (q)  
is form factor.  
The electron energy takes the simple:  
p2z 22  
n
l2  
2
n,l,p  
(
,
).  
n 0, 1,2,... l 1, 2,3,...  
2
2
z
2m 2m Lx Ly  
In order to establish the quantum kinetic equations for electrons in quantum wire, we  
use general quantum equations for the particle number operator or electron distribution  
function:  
fn,l,p (t)  
z
i  
 an,l,p an,l,p ,H t  
,
(2)  
z
z
t  
TẠP CHÍ KHOA HỌC SỐ 20/2017  
69  
with fn,l,p (t)  an,l,p an,l,p t is distribution function. From Eqs. (1) and (2), we obtain the  
z
z
z
quantum kinetic equation for electrons in quantum wire (after supplement: a linearly  
polarized electromagnetic wave field and a direct electric field E0 ):  
fn,,lp (t)  
fn,l,p (t)  
z
z  
e.E(t)e.E p ,h(t)  
0
c
z
t  
pz  
2
2  
eE0q  
  (q) . J2 (  
)Nq  
f
n ,l ,p q (t)fn,l,p (t) .(   
n,,lp L)  
D
   
n,l,n ,l  
L
n ,l ,pz qz  
m2  
z
z
z
   
n ,l ,q  
L  
fn ,l ,p q (t) fn,l,p (t)    
 n,l,p L  
(3)  
   
   
n ,l ,pz qz  
z
z
z
z
h   
eE0q  
H
H
J (  
)
is the Bessel function  
where  
is the unit vector in the magnetic field direction,  
L
m2  
Nq  
of real argument;  
is the time-independent component of distribution function of phonon:  
k T ; c is the cyclotron frequency, () is the relaxation time of electrons with  
B
Nq   
vsqz  
energy .  
For simplicity, we limit the problem to the case of  
We multiply both sides Eq.  
l 0, 1.  
(e / m)p (  
)
are carry out the summation over n, l and  
(2) by  
p
z , we obtained:  
z
n,p  
1
(i  
(i  
)R   Q() S()   R (),h ,  
   
(4)  
(5)  
(6)  
c
0
()  
*  
*  
1
)R   Q() S ()   R (),h ,  
   
c
0
()  
*  
R0 ()  
Q0 () S0 ()  c R() R (),h ,  
()  
with:  
e
R()   
p f (p )    
,
(7)  
(8)  
(9)  
z
1
z
n,l,pz  
m
n,l,pz  
e2E  
m2k T n,l,p  
p2f (  
)     
,
Q()   
z
0
n,l,pz  
n,l,pz  
B
z
e2E0  
m2k T n,l,p  
p2f (  
)     
,
Q0 ()   
z
0
n,l,pz  
n,l,pz  
B
z
70  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ HÀ NỘI  
e2F2q2z  
2
2e  
m
S0 ()   
C2q In,l,n',l' (q) Nqqzf10 (pz )  
4m24  
n,l,n',l',pz ,qz  
 (  
 n,l,p q  )  (n',l',p q n,l,p q )   
n',l',pz qz  
z
z
z
z
(10)  
 (n',l',p q  n,l,p  q  )  (n',l',p q  n,l,p    )   
q
z
z
z
z
z
z
(  n,l,p ),  
z
e
n,l,pz  
  f0  
f0 n0 exp(  
)
; n0 is particle  
  E    
f10 (pz )  pz  
where  
;
;
0
0
n,l,pz  
0   
kBT  
m
n,l,pz  
density; kB is Boltzmann constant; T is temperature of system.  
e2F2q2z  
4m24  
2
2e  
m
S()   
Cq2 In,l,n',l' (q) Nqqzf1(pz )  
n,l,n',l',pz ,qz  
 (  
 n,l,p  q  )  (n',l',p q  n,l,p  q  )   
n',l',pz qz  
z
z
z
z
(11)  
 (n',l',p q  n,l,p  q  )  (n',l',p q  n,l,p    )   
q
z
z
z
z
z
z
(  n,l,p ),  
z
   
E
  f0  
e
n,l,pz  
   
f1 (pz )  pz  
with  
;
.
m
  
1i   
n,l,pz  
n,l,pz  
Solving the equation system (4), (5), (6), we obtain:  
   
2c2 ()  
1   ()  
S,h  
   
2
Q,h 2  ()Re  
.
(12)  
R0 ()  ()(Q0 S0 )   
c
2
2
1i    
   
The density of current:  
2
2
  
0
2    
1     
F   
F   
F   
c
AC D E,h  
j R ()d  AC D E   
,
(13)  
(14)  
0
0
1 22 1 22   
F
0
n e3F22  2  
2
2  
n
l2  
F   
0
where A   
I2n,l,n',l' exp   
,
2
32m4vs22  
2m Lx L2y  
n,l,n',l'  
C  4N17/2 12  
24  
   
N1  
N1  
N1  
(4,9/2;  
)
(3,7/2;  
)
(2,5/2;  
2m  
2m  
2m )   
(15)  
4N72/2 12  
24  
   
(2,5/2;  
,
N2  
N2  
N2  
(4,9/2;  
)
(3,7/2;  
)
2m  
2m  
2m )   
TẠP CHÍ KHOA HỌC SỐ 20/2017  
71  
(16)  
(17)  
(18)  
2
2
2m   
22  
2mLy  
2
2
2  
2  
N1    
(n n )   
(l l )   ,  
2 2mL  
2
x
2
2
2
2m   
22  
2
2
2  
2  
N2    
n02e2  
(n n )   
(l l )   ,  
2 2mL  
2mLy  
2
x
2
2  
2  
2  
n
l2  
2
2
D   
   
exp   
,
F
4m2k T 2m  
2m Lx Ly  
2
n,l  
B
1
(a,b,z)  
ezx xa1(1ax)ba1dx  
is the Hypergeometrix function.  
(a)  
0
We obtain the expressions for the current density j0 , and select: E  0x ; h  0y :  
j AC D E  
0x ; j AC D E  
(19)  
(20)  
0x  
0y  
0y  
2
2
2    
1     
F   
F   
F   
c
j AC D E   
AC D E  
0z  
0z  
1 22 1 22   
F
Equation (13) shows the dependent of the direct current density on the frequency of  
the laser radiation field, the frequency of the linearly polarized electromagnetic wave, the  
size of the wire. We also see the dependence of the constant current density on characteristic  
parameters for quantum wire such as: wave function; energy spectrum; form factor In,l,n’,l’  
and potential barrier, that is the difference between the quantum wire, superlattices, quantum  
wells, and bulk semiconductors.  
3. NUMERICAL RESULTS AND DISCUSSION  
j0z  
In this section, we will survey, plot and discuss the expressions for  
for the case of a  
specific GaAs/GaAsAl quantum wire. The parameters used in the calculations are as follows  
[2-12]: m = 0,0665m0 (m0 is the mass of free electron); F = 50meV; (F ) 10-11s-1;  
n0 1023 m3 ;  5.3103 kg / m3 ;   2.2108 J ; E = 106 V/m; E0 = 5.106V/m; F = 105N.  
j0z  
Fig.1 shows the dependence of  
on the frequency of the intense laser radiation.  
From these figure, we can see the nonlinear dependence of j0z on the frequency of the  
intense laser radiation, when the frequency of the intense laser radiation increases joz  
increases.  
72  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ HÀ NỘI  
j0z  
Fig.1. The dependence of jz on the frequency of  
the laser radiation with different values of T  
j0z  
Fig.2. The dependence of jz on the frequency of  
the electromagnetic wave with different values of T  
j0z  
Fig.2 shows the dependence of  
on the frequency of the electromagnetic wave.  
From these figure, we can see the nonlinear dependence of j0z on the frequency of the  
electromagnetic wave, when the frequency of the electromagnetic wave increases joz  
decreases and j0z will have a stable value when có giá trị cỡ 1013 .  
Fig.3 shows the dependence of j0z on the size of the wire. From this figure, when radius  
increase joz increases, when Lx, Ly continue to increase then j0z will have a stable value.  
TẠP CHÍ KHOA HỌC SỐ 20/2017  
73  
j0z  
Fig. 3. The dependence of  
on the size of the wire  
4. CONCLUSION  
In this paper, we have studied the photostimulated quantum effect in rectangular  
quantum wire with a infinite potential for the case of electron – acoustic phonon scattering.  
In this case, one dimensional electron systems is placed in a linearly polarized  
electromagnetic wave, a dc electric field and a laser radiation field at high frequency. We  
obtain the expressions for current density vector j0 , in which, plot and discuss the  
j
j0z  
j0z  
show the dependence of on the frequency   
expressions for 0z . The expressions of  
of the linearly polarized electromagnetic wave, on the size of the wire, the frequency of  
the intense laser radiation; and on the basic elements of quantum wire with a infinite  
potential. The analytical results are numerically evaluated and plotted for a specific quantum  
wire GaAs/AlGaAs.  
Acknowledgment: This work was completed with financial support from project  
B2016.DNA.25, thanks also basic research program of the Hanoi Metropolitan University.  
REFERENCES  
1. G.M.Shmelev, G.I.Tsurkan and É.M.Épshtein (1982), “Photostumilated radioelectrical  
transverse effect in semiconductors”, Phys. Stat. Sol. B, Vol. 109, p.53.  
2. B.D.Hung, N.V.Nhan, L.V.Tung, and N.Q.Bau (2012), “Photostimulated quantum effects in  
quantum wells with a parabolic potential”, Proc. Natl. Conf. Theor. Phys, Vol 37, p.168.  
74  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ HÀ NỘI  
3. S.V.Kryuchkov, E.I.Kukhar’ and E.S.Sivashova (2008), “Radioelectric effect in a superlattice  
under the action of an elliptically polarized electromagnetic wave”, Physics of the Solid State,  
Vol 50, No. 6, p.1150.  
4. A.Grinberg and Luryi (1988), “Theory of the photon - drag effect in a two-dimensional electron  
gas”, Phys. Rev. B 38, p.87.  
5. N.Q.Bau and B.D.Hoi (2012), “Influence of a strong electromagnetic wave (Laser radiation) on  
the Hall effect in quantum well with a parabolic potential”, J. Korean Phys. Soc, Vol.60, p.59.  
6. V.L.Malevich Izv (1977), “High-frequency conductivity of semiconductors in a laser radiation  
field”, Radiophysics and quantum electronics, Vol. 20, Issue 1, p.98.  
7. M.F.Kimmitt, C.R.Pidgeon, D.A.Jaroszynski, R.J.Bakker, A.F.G.Van Der Meer, and D.Oepts  
(1992), “Infrared free electron laser measurement of the photon darg effect in P-Silicon”, Int. J.  
Infrared Millimeter Waves, Vol 13, No 8, p.1065.  
8. S.D.Ganichev, H.Ketterl, and W.Prettl (1999), “Spin-dependent terahertz nonlinearities at inter-  
valance-band absorption in p-Ge”, Physica B 272, p.464.  
9. G.M.Shmelev, L.A.Chaikovskii and N.Q.Bau (1978), “HF conduction in semiconductors  
superlattices”, Sov. Phys. Tech. Semicond, Vol 12, No. 10, p.1932.  
10. N.Q.Bau, D.M.Hung and L.T.Hung (2010), “The influences of confined phonons on the  
nonlinear absorption coefficient of a strong electromagnetic wave by confined electrons in  
doping superlattices”, PIER Letters, Vol. 15, p.175.  
11. N.Q.Bau and D.M.Hung, “Calculating of the nonlinear absorption coefficient of a strong  
electromagnetic wave by confined electrons in doping superlattices”, PIER B 25 (2010) 39.  
12. N.Q.Bau, D.M.Hung and N.B.Ngoc (2009), “The nonlinear absorption coefficient of a strong  
electromagnetic wave caused by confined electrons in quantum wells”, J. Korean Phys. Soc 54,  
p.765.  
HIỆU ỨNG KÍCH THÍCH QUANG LƯỢNG TỬ TRONG DÂY  
LƯỢNG TỬ HÌNH CHỮ NHẬT VỚI HỐ THẾ CAO VÔ HẠN  
TRONG TRƯỜNG HỢP TÁN XẠ ELECTRON – PHONON ÂM  
Tóm tắt: Thu được biểu thức giải tích cho mật độ dòng điện trên cơ sở phương trình động  
lượng tử cho các eletrons dưới ảnh hưởng của các trường sóng điện từ phân cực thẳng,  
điện trường không đổi và laze cường độ mạnh trong dây lượng tử hình chữ nhật với hố thế  
cao vô hạn trong trường hợp tán xạ electron-phonon âm. Mật độ dòng điện là một hàm số  
phụ thuộc vào tần số của laze, tần số của sóng điện từ phân cực thẳng, nhiệt độ hệ và kích  
thước của dây lượng tử. Biểu thức giải tích của mật độ dòng được đánh giá số và vẽ đồ thị  
cho dây lượng tử đặcbiệt GaAs/AlGaAs. Các kết quả nhận được trong dây lượng tử được  
so sánh với các kết quả tương ứng trong bán dẫn khối và siêu mạng cho thấy sự khác biệt.  
Từ khóa: Bán dẫn, hố lượng tử, dây lượng tử, siêu mạng, chấm lượng tử.  
pdf 8 trang yennguyen 18/04/2022 920
Bạn đang xem tài liệu "The photostimulated quantum effect in rectangular quantum wire with an infinite potential for the case of electron-acoustic phonon scattering", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

File đính kèm:

  • pdfthe_photostimulated_quantum_effect_in_rectangular_quantum_wi.pdf