Simple core-shell model for a soft nano particles and virus with analytical solution

TẠP CHÍ KHOA HỌC SỐ 18/2017  
65  
SIMPLE COREꢀSHELL MODEL FOR A SOFT NANO PARTICLES  
AND VIRUS WITH ANALYTICAL SOLUTION  
Phung Thi Huyen1, Luong Thi Theu1, Dinh Thi Thuy2,  
Dinh Thi Ha3, Nguyen Ai Viet4  
1Hanoi Pedagogical University 2  
2Thai Binh University of Medicine and Pharmacy  
3Hanoi National University of Education  
4Institute of Physics  
Abstract: In some recently experiments with virus, their core part are DNA tightly packed  
with very high charge density. The contribution of this highly charged part to the  
electrical field outside virus now cannot be easily neglected in general case. In this work  
we propose a simple coreꢀshell model for this type of soft particles and virus. The soft  
particles consider consisted from the two parts: a charged hard core with a high charge  
density and a charged outer layer. We assume that the core part is tightly condensed, so  
the charge carriers of DNA can be partly bounded and partly moved. With this  
consideration, the core part now is very look like the outside solution. The corresponding  
PoissonꢀBoltzmann equations for this new model can be solved analytically. These  
analytical solutions would be useful in the investigation the problem of virus with  
charged core, such as in bacteriophage MS2.  
Keywords: Soft nano, virus, coreꢀshell structure, charge density of AND, Poissonꢀ  
Boltzmann equation, analytical solutions.  
Email: phunghuyen.9xhpu2@gmail.com  
Received 20 June 2017  
Accepted for publication 10 September 2017  
1. INTRODUCTION  
In the last years, nanotechnology has a rapid advancement and opened up novel wide  
range of applications in life science and material science [1ꢀ3]. Because the complexity of  
biological structures and the variation of solvents, despite many effort to theoretical  
investigation to understand the properties of soft particles [1, 4ꢀ7], the theoretical models  
still face a variety of problematic issues and challenges. Thus, the construction of simple  
physics models to explain new observed phenomena and experimental data are important  
to the understanding of these complex systems.  
66  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ Hꢀ NỘI  
One of such simple models for soft nano particles was introduced in the works of  
Ohshima [5ꢀ8]. The Oshima’s model provides a powerful tool for investigating the  
behavior of biocolloidal particles, also viruses and bacteria. In Oshima’s model, the soft  
particles are described as a nonꢀpenetrable neutral hard core coated by an ion permeable  
polyelectrolyte soft layer with negative constant volume density charge. The electric  
potential distribution of this system then is obtained by solving the PoissonꢀBoltzmann  
equations. At present, improved Oshima models of soft nano particles are found much  
application in the works [9ꢀ14].  
In many present investigations, charge of the core part of virus has been rarely taken  
into account. In most cases, a core charge is assumed to be neglected, so the electrical  
potential outside the core remains unchanged. A theoretical study mentioned the charge of  
the virus core in general cases to calculate the nonspecific electrostatic interactions in virus  
systems. Recently, experiment data of the case of bacteriophage MS2 [15] have shown that  
the ratio between the volume charge density of the core and that of the surface layer is  
measured to be half of that found suggesting that the effect of the core charge on the  
electrostatic, so electrokinetic properties of the particle should be reꢀexamined.  
For explanation this observed phenomenon, a new coreꢀshell model for soft nano  
particles was proposed in the work [16] with the consideration that soft particle consists  
from two parts: a charged hard core with a volume charge density and a charged outer  
layer. Using this model, the contribution of the core parameters, such as the core charge  
and the core dielectric constant are studied. The model still complicated and can be solved  
by numerical method only.  
In this work we propose a simple coreꢀshell model for a soft particles and virus, based  
on the assumption the core part is tightly condensed that the charge carriers of DNA can be  
partly bounded and partly moved [17]. With this assumption, the core part now is very  
look like the outside solution. The corresponding PoissonꢀBoltzmann equations for this  
new model can be solved analytically. Our calculations provide the one of the first  
theoretical analytical investigations about the effects of temperature and salt concentration  
on the electrostatic properties, and could be applied to the case of virus with highly  
charged hard cores, such as bacteriophage MS2 [15].  
2. OSHIMA MODEL FOR SOFTꢀPARTICLES  
In the figure 1 we present our coreꢀshell model for nano soft particles. We consider a  
soft particle with radius b immersed in an electrolyte solution. The soft particle is assumed  
to contain a hard core of radius a coated by an ionꢀpenetrable surface charge layer of  
TẠP CHÍ KHOA HỌC SỐ 18/2017  
67  
polyelectrolyte with thickness (b a). Identified with the Ohshima model, the volume  
charge density of the soft shell is ZNe, where e is an electron charge, Z and N are the  
valence and the charge density of the polyelectrolyte ions, respectively.  
density  
The theoretical model of a soft particle including a hard core with the charge  
ρcore and the dielectric constant εcore, and an ionꢀpenetrable surface layer of  
polyelectrolyte  
solution with the charge  
coated around. The soft particle is immersed in an electrolyte  
density ρel and the permittivity ε  
r (see in Fig. 1).  
The electric potential distribution obeys the Poissonꢀ Boltzmann equations [6, 15]  
ρel  
εrε0  
ꢀψ = −  
ꢀψ = −  
ꢀψ = −  
,
b
a
r<∞  
ρel + ZNe  
,
r<b  
r<a  
(1)  
εrε0  
ρcore  
εcoreε0  
,
0
Fig 1. The theoretical coreꢀshell model of soft nano particles with a hard core charge.  
the charge  
density ρel  
Here ε0 are the permittivity of vacuum,  
Boltzmann distribution:  
distribution  
is the  
(2)  
M
zieψ  
ρ (r) = z en exp −  
,
el  
i
i
kBT  
i=1  
where M, zi, ni are the number ion types, the i th ionic valance and the ion concentration in  
solution, respectively. Considering a simple case that the solution only contains a  
monovalent salt M = 2 and zi = {− z, z}, we get:  
68  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ Hꢀ NỘI  
zeψ  
kBT  
ρ (r) = −2nzesinh  
.
(3)  
el  
In the case of a low potential, the charge density in the electrolyte solution is given by:  
2nz2e2  
(4)  
ρel (r) =  
ψ,  
kBT  
Substituting Eq. (4) into Eq. (1) provides:  
d2ψ 2dψ  
+
= κ2ψ,  
b r < ∞  
a r < b  
dr2  
rdr  
2
d ψ 2dψ  
ZNe  
(5)  
+
= κ2 ψ −  
,
dr2  
rdr  
κ2εrε0  
d2ψ 2dψ  
ρcore  
εcoreε0  
+
= −  
,
0 r < a  
dr2  
rdr  
where κ2 = 2z2e2n / εrε0kBT is the DebyeꢀHuckel parameter.  
The spherical PoissonꢀBoltzmann equation (5) does not have a general analytical  
solution and can be numerically solved only.  
3. NEW SIMPLE COREꢀSHELL MODEL FOR SOFT NANO PARTICLES  
In this part we propose a new model for soft nano particles and the virus. This simple  
model can be solved analytically. Due to the tidily packed effect, we hypothesis that chare  
of DNA in the virus core is quasiꢀbounded or can move quasiꢀfreely [17] like the charge in  
solvent, then in the expression (5) the third equation has the same form of first equation.  
The electric potential distribution now satisfies new Poissonꢀ Boltzmann equations  
d2ψ 2dψ  
+
= κ2ψ,  
b r < ∞  
a r < b  
dr2  
rdr  
2
d ψ 2dψ  
ZNe  
+
= κ2 ψ −  
,
(6)  
dr2  
rdr  
κ2εrε0  
d2ψ 2dψ  
+
= −κ2coreψ,  
0 r < a  
dr2  
rdr  
2
κcore = ρcore / εcoreε0  
where  
is the DebyeꢀHuckel parameter of core.  
TẠP CHÍ KHOA HỌC SỐ 18/2017  
69  
The general solution of Eq. (6) gives us:  
ekr  
r
ekr  
r
ψ(r) = A  
+ B  
,
b r ≤ ∞  
a r b  
1
1
ekr  
ekr  
ZNe  
k2εrε0  
ψ(r) = A2  
+ B2  
+
,
(7)  
r
r
corer  
corer  
ek  
ek  
ψcore = A  
+ B3  
,
0 r a  
3
r
r
The coefficients A1, A2, A3, B1, B2, and B3 in Eq. (7) can be found by applying the  
following boundary conditions:  
ψ() = 0, ψ(0) ≠ ∞,  
(8)  
ψ(a) = ψ(a+ ), ψ(b) = ψ(b+ ),  
εcoreε0ψ'(a) = εrε0ψ'(a+ ), ψ(b) = ψ(b+ ),  
(9)  
(10)  
The founding of the solution of system of equations (7ꢀ10) is very difficult in general  
cases. We try to solve this problem in the next section.  
4. ANALYTICAL SOLUTION OF THE MODEL  
In this part we solve the system of equations (7ꢀ10) and derive the coefficients A1, A2,  
A3, B1, B2, and B3 in explicit analytical forms.  
At infinity the electrical potential must be zero, we can put  
, and using the  
B1 = 0  
above boundary we get a linear system of equations for five variable A1, A2, A3, B2, and B3  
eka  
a
eka  
a
eka  
a
ZNe  
k2εrε0  
A
= A2  
+ B2  
+
,
1
eka eka  
eka eka  
eka eka  
A k  
= A2 k  
+ B2 k  
,
1
a
a2  
a
a2  
a
a2  
coreb  
ek  
coreb  
ekb  
ekb  
ZNe  
ek  
A2  
b
+ B2  
+
= A  
+ B3  
,
(11)  
3
b
k2εrε0  
b
b
coreb  
coreb  
b   
b   
ekb ekb  
ekb ekb  
ek  
ek  
ek  
ek  
core  
core  
A2 k  
+ B2 k  
= A kcore  
+ B kcore  
,
3   
3   
b
b2  
b
b2  
b
b2  
b
b2  
Taking the case of symmetrical solution we can put B3= ꢀ A3, now we have a linear  
system of 4 equations for 4 variable A1, A2, A3, and B2  
70  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ Hꢀ NỘI  
eka  
a
eka  
a
eka  
a
ZNe  
k2εrε0  
A
= A2  
+ B2  
+
,
1
eka eka  
eka eka  
eka eka  
A k  
= A2 k  
+ B2 k  
,
1
a
a2  
a
a2  
a
a2  
coreb  
coreb  
ekb  
ekb  
ZNe  
ek  
ek  
A2  
b
+ B2  
+
= A  
+ B3  
,
(12)  
3
b
k2εrε0  
b
b
kcore  
kcore  
coreb  
ekb ekb  
ekb ekb  
e
b + ek  
b
e
b ek  
core  
b    
A2 k  
+ B2 k  
= A k  
,
3   
core   
   
b
b2  
b
b2  
b2  
   
Above linear system of equations can be solved analytically. For easier to see that, we  
A x1, A2 x2, B2 x3, A3 x  
kcore = k  
replace  
3 , and  
C . We take the matrix  
1
form of this linear system of equations:  
X = BX,  
(13)  
where ∆ is the (4x4) matrix  
eka  
a
eka  
a
eka  
a
0
0
eka eka  
eka eka  
eka  
a2  
eka  
k  
k
+
k  
a2  
a
a 2  
a
,
a
ꢀ =  
ekb  
b
ekb  
b
ek b ek b  
c
c
0
0
b
kcb  
ekb ekb  
ekb ekb  
e
+ ek b  
ek b ek b  
c
c
c
c   
k  
k
k
b
b2  
b
b2  
b
b2  
X and B are the 4ꢀvectors:  
ZNe  
k2εrε0  
0
x
1   
x2  
X =  
,
.
(14)  
B =  
x
3   
ZNe  
k2εrε  
x4  
0   
0
The solutions of the matrix equation (13) can be obtained as follows:  
detꢀ  
1 , x2 =  
detꢀ  
detꢀ  
detꢀ  
det4  
detꢀ  
x1 =  
2 , x3 =  
detꢀ  
3 , x4 =  
detꢀ  
,
where the matrix determinants are:  
TẠP CHÍ KHOA HỌC SỐ 18/2017  
71  
eka  
a
eka  
a
eka  
a
0
0
eka eka  
eka eka eka  
eka  
a
k  
k
+
k  
a
a2  
a
a2  
a2  
det ꢀ =  
ekb  
ekb  
b
ek b ek b  
c
c
0
0
b
b
ekb ekb  
ekb ekb  
e
k b + ek b  
ek b ek b  
c
c
c
c
c   
k  
k
k
b
b2  
b
b2  
b
b2  
eka  
= 4  
sinhk(b a) coshk(b a) k cosh k b + ksinh(k b),  
(15)  
[
]
(
)
C
C
C
a3b2  
ZNe  
k2εrε0  
eka  
a
eka  
a
0
eka eka eka  
eka  
a
0
k
+
k  
0
a
ekb  
a2  
a2  
det 1 =  
ekb  
b
ek b ek b  
c
c
ZNe  
k2εrε0  
b
b
ekb ekb  
ekb ekb  
e
k b + ek b  
ek b ek b  
c
c
c
c
0
k  
k
k
c   
b
b2  
b
b2  
b
b2  
4ZNe   
1
ab2  
1
=
k
cosh k(b a) kC cosh(kCb) sinh(kCb)  
k2εrε  
a
0   
1
ab2  
1
1
1
+
sinhk(b a) kC cosh(kCb) k2 sinh(kCb) +  
kC cosh(kCb) sinh(kCb)  
,
3
a
a b  
b
(16)  
eka  
a
ZNe  
eka  
a
0
0
k 2εrε0  
eka eka  
eka  
a2  
eka  
a
k  
0
k  
a
a2  
det 2 =  
ekb  
b
ek b ek b  
c
c
ZNe  
k 2εrε0  
0
0
b
kcb  
ekb ekb  
e
+ ek b  
ek b ek b  
c
c
c
c   
0
k
k
b
b2  
b
b2  
k (ba)  
2ZNe e  
2
a3b2  
1
=
ka +1 k cosh k b k sinh(k b) +  
kC cosh(kCb) sinh(kCb)  
,
(
)
(
)
(
)
C
C
C
k2εrε0 a2b2  
b
(17)  
72  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ Hꢀ NỘI  
eka  
a
eka  
a
ZNe  
0
0
k2εrε0  
eka eka  
eka eka  
k  
k
+
0
a
a2  
a
a2  
det 3 =  
ekb  
ZNe  
k2εrε0  
ek b ek b  
c
c
0
0
b
b
ekb ekb  
e
k b + ek b  
ek b ek b  
c
c
c
c
c   
k  
0
k
b
b2  
b
b2  
k (b+a)  
2ZNe e  
1
=
ka +1  
sinh k b k cosh(k b) ,  
(18)  
(
)
(
)
C
C
C
k2εrε  
a2b2  
b
0   
eka  
a
eka  
a
eka  
a
ZNe  
k2εrε0  
eka eka  
eka eka eka  
eka  
k  
k
+
k  
0
a
a2  
a
ekb  
a2  
a2  
a
det 4 =  
ekb  
b
ZNe  
k2εrε0  
0
0
b
ekb ekb  
ekb ekb  
k  
k
0
b
b2  
b
b2  
eka  
eka eka  
2ZNe  
(19)  
=
k
ka +1 + k  
+
cosh k(b a) sinh k(b a) ,  
(
)
(
)
k2εrε0 a2b2  
a3b a3b2  
1
1
With: m = kC cosh(kCb) sinh(kCb) , n = kC cosh(kCb) k2 sinh(kCb) ,  
b
a
h = sinh k(b a) cosh k(b a) .  
[
]
Therefore, the coefficients A1, A2, A3, and B2 are  
4ZNe   
1
1
n
m
a3b  
k
cosh k(b a) kC cosh(kCb) sinh(kCb) +  
sinhk(b a) +  
k2εrε  
ab2  
a
ab2  
0   
A =  
, (20)  
(21)  
1
eka  
a3b2  
4h  
k cosh k b + k sinh(k b)  
(
)
C
C
C
k(ba)  
2ZNe e  
2
ka +1 k cosh k b k sinh(k b) +  
m
(
)
(
)
(
)
C
C
C
k2εrε0 a2b2  
a3b2  
A2 =  
,
eka  
4h  
k cosh k b + k sinh(k b)  
(
)
C
C
C
a3b2  
TẠP CHÍ KHOA HỌC SỐ 18/2017  
73  
eka  
eka eka  
ZNe  
k
ka +1 h k  
+
(
)
k2εrε0 a2b2  
a3b a3b2  
A = −B3 =  
,
(22)  
3
eka  
2h  
k cosh k b + k sinh(k b)  
(
)
C
C
C
a3b2  
ZNe  
k2εrε0  
kb  
ka +1 (m)  
e
(
)
B2 =  
,
(23)  
2h  
k cosh k b + k sinh(k b)  
(
)
C
C
C
a
Finally the electrical potential of virus in our new model can be founded in the explicit  
analytical forms:  
ekr  
r
ekr  
r
ψ(r) = A  
,
b r ≤ ∞  
ZNe  
1
ekr  
r
(24)  
ψ(r) = A2  
+ B2  
+
,
a r b  
k2εrε0  
2
ψ
core (r) = A sinh k r ,  
0 r a  
(
)
3
core  
r
where the set of coefficients A1, A2, A3, and B2 are now well defined by the physical  
parameters of the virus and solution environment as above.  
5. CONCLUTIONS  
In many present investigations using the Oshima model for soft nano particles, the  
core charge distribution has been rarely taken into account. In most cases, a core part is  
neutral or core charge is assumed to be zero, so the electrical potential outside particles  
remains unchanged. In recently experiments with virus, the core part are the tightly  
confined DNA with very high charge density. The contribution of this high charged part to  
the electrical field outside virus now cannot be easily omitted in general and have to more  
detail investigation.  
In this work we propose a simple coreꢀshell model for soft particles. The soft particles  
consider consisted from the two parts: a charged hard core with a high charge density and a  
charged outer layer. We assume that the core part is tightly condensed, so the charge  
carriers of DNA can be partly bounded and partly moved. With this consideration, the core  
part now is very look like the outside solution. The corresponding PoissonꢀBoltzmann  
equations for this new model can be solved analytically.  
We believe that using the obtained analytical solutions from our model with  
improvement by numerical calculation on PC could explain the identical properties of  
untreatedꢀMS2 and RNAꢀfree MS2 reported in works [15].  
74  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ Hꢀ NỘI  
REFERENCES  
1. S. M. Louie, T. Phenrat, M. J. Small, R. D. Tilton, and G. V. Lowry (2012), Langmuir 28  
,
p.10334.  
2. C. N. Likos (2006), Soft Matter 2, p.478.  
3. S. Nayak and L. A. Lyon(2005), Angew. Chem. Int. Ed. Engl. 44, p.7686.  
4. H. Ohshima (1994), J. Colloid Interface Sci.163, p.474.  
5. W. J. Chen and H. J. Keh(2013), J. Phys. Chem. B 117, p.9757.  
6. H. Ohshima (2009), Sci. Technol. Adv. Mater. 10, p.063001.  
7. H. Ohshima (1995), Adv. Colloid Interface Sci. 62, p.189.  
8. H. Ohshima (2013), Curr. Opin. Colloid Interface Sci. 18, 73.  
9. Y. Liu, D. Janjaroen, M. S. Kuhlenschmidt, T. B. Kuhlenschmidt, and T. H. Nguyen (2009),  
Langmuir 25, p.1594.  
10. J. de Kerchove and M. Elimelech(2005), Langmuir 21, p.6462  
11. J. F. L. Duval and H. Ohshima(2006), Langmuir 22, p.3533.  
12. J. F. L. Duval and F. Gaboriaud (2010), Curr. Opin. Colloid Interface Sci. 15, p.184.  
13. J. Langlet, F. Gaboriaud, C. Gantzer, and J. F. L. Duval (2008), Biophys. J. 94, p.293.  
14. J. F. L. Duval, J. Merlin, and P. A. L. Narayana (2011), Phys. Chem. Chem. Phys.13, p.1037.  
15. Thanh H. Nguyen, Nickolas Easter, Leolardo Gutierrez, Lauren Huyett, Emily Defnet, Steven  
E. Mylon, Jame K. Ferri and Nguyen Ai Viet (2011), Soft Matter. 7, p.10449.  
16. Anh D. Phan, Dustin A. Tracy, T. L. Hoai Nguyen, N. A. Viet, TheꢀLong Phan and T.H.  
Nguyen (2013), The Journal of Chemical Physics 139, p.244908.  
17. Anh D. Phan, Do T. Nga, TheꢀLong Phan, Le T. M. Thanh, Chu T. Anh, Sophie Bernad, and  
N. A. Viet (2014), Phys. Rev. E 90, p.062707.  
MÔ HÌNH LÕIꢀVꢁ ĐƠN GIꢂN CHO CÁC HꢃT NANO MꢄM VÀ  
VIRUT VꢅI LꢆI GIꢂI GIꢂI TÍCH  
Tóm tꢁt: Trong mꢂt sꢃ thí nghiꢄm hiꢄn nay vꢅi virut, phꢆn lõi cꢇa chúng có thꢈ là các  
ADN cuꢂn chꢉt có mꢊt ñꢂ ñiꢄn tích rꢋt cao. Đóng góp cꢇa lõi tích ñiꢄn cao này vào ñiꢄn  
thꢈ quanh virut là không thꢈ dꢌ dàng bꢍ qua trong các trưꢎng hꢏp tꢐng quát. Trong bài  
báo này, chúng tôi ñꢑ xuꢋt mꢂt mô hình lõi – vꢍ ñơn giꢒn cho các hꢓt nano mꢑm và virut.  
Hꢓt nano mꢑm ñưꢏc giꢒ thuyꢔt gꢕm 2 thành phꢆn: mꢂt lõi cꢖng tích ñiꢄn vꢅi mꢊt ñꢂ ñiꢄn  
tích cao và mꢂt lꢅp vꢍ tích ñiꢄn. Chúng tôi giꢒ thiꢔt rꢗng phꢆn lõi ñã ñưꢏc cuꢂn chꢉt, vì  
vꢊy các hꢓt tꢒi ñiꢄn cꢇa AND có thꢈ là bán cꢆm tù hoꢉc bán tꢘ do. Vꢅi giꢒ thuyꢔt này,  
phꢆn lõi sꢙ giꢃng vꢅi lꢅp bên ngoài virut. Phương trình PoissonꢀBoltzmann tương ꢖng  
vꢅi mô hình mꢅi này có thꢈ giꢒi ñưꢏc và cho lꢎi giꢒi dưꢅi dꢓng giꢒi tích tưꢎng minh. Các  
lꢎi giꢒi dưꢅi dꢓng giꢒi tích tưꢎng minh này sꢙ có ích trong viꢄc nghiên cꢖu các virut có  
lõi tích ñiꢄn, ví dꢚ như thꢘc khuꢛn thꢈ MS2.  
Tꢜ khóa: Hꢓt nano mꢑm,Virut, Cꢋu trúc lõiꢀvꢍ, Mꢊt ñꢂ ñiꢄn tích ADN, Phương trình  
PoissonꢀBoltzmann, Lꢎi giꢒi giꢒi tích.  
pdf 10 trang yennguyen 18/04/2022 940
Bạn đang xem tài liệu "Simple core-shell model for a soft nano particles and virus with analytical solution", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

File đính kèm:

  • pdfsimple_core_shell_model_for_a_soft_nano_particles_and_virus.pdf