Đồ án Thiết kế bộ băm xung áp một chiều có đảo chiều

BỘ CÔNG THƯƠNG  
TRƯỜNG ĐẠI HỌC ĐIỆN LỰC  
KHOA CÔNG NGHỆ TỰ ĐỘNG  
ĐỒ ÁN MÔN HỌC  
ĐIỆN TỬ CÔNG SUẤT  
Đề tài: Thiết kế bộ băm xung áp một chiều đảo chiều  
Giảng viên hướng dẫn : PHẠM THỊ THÙY LINH  
Sinh viên thực hiện: LƯU VĂN DƯƠNG  
Ngành : CÔNG NGHỆ TỰ ĐỘNG  
Lớp : D9CNTD1  
Khoá : 2014- 2019  
Nội, tháng 7 năm 2017  
LỜI MỞ ĐẦU  
Ngày nay, điện tử công suất đã đang đóng 1 vai trò rất quan trọng trong quá trình  
công nghiệp hoá đất nước. Sự ứng dụng của điện tử công suất trong các hệ thống truyền  
động điện rất lớn bởi sự nhỏ gọn của các phần tử bán dẫn việc dễ dàng tự động hoá  
cho các quá trình sản xuất. Các hệ thống truyền động điều khiển bởi điện tử công suất đem  
lại hiệu suất cao. Kích thước, diện tích lắp đặt giảm đi rất nhiều so với các hệ truyền động  
thông thường như: Khuếch đại từ, máy phát - động cơ ...  
Xuất phát từ yêu cầu thực tế đó, trong nội dung môn học Điện tử công suất chúng em đã  
được giao thực hiện đề tài:Thiết kế mạch băm xung một chiều đảo chiều để điều  
chỉnh động cơ một chiều kích từ độc lâp.  
Với sự hướng dẫn tận tình của cô giáo: Phạm Thị Thùy Linh chúng em đã tiến hành  
nghiên cứu,thiết kế đề tài và hoàn thành đúng thời hạn được giao.  
Trong quá trình thực hiện đề tài do khả năng kiến thức thực tế hạn chế nên không  
thể tránh khỏi sai sót kính mong thầy cô, và các bạn đóng góp ý kiến để đề tài của chúng em  
được hoàn thiện hơn.  
Chúng em xin chân thành cảm ơn  
MỤC LỤC  
Chương 1: Kiến thức tổng quát  
1.1 Giới thiệu chung về động cơ kích từ độc lập  
1.1.1 Đặc điểm cấu tạo và nguyên lý hoạt động  
1.1.2Phương trình đặc tính cơ  
1.1.3Các phương pháp điều chỉnh tốc độ  
1.2 Giới thiệu chung về bộ băm xung áp một chiều  
1.2.1 Khái niệm, phân loại các bộ băm xung áp một chiều  
1.2.2 Van IGBT  
1.2.3 Phân tích sơ đồ băm xung một chiều đảo chiều  
Chương 2: Nghiên cứu thiết kế tính toán mạch lực  
2.1 Thiết kế mạch lực  
2.2 Tính toán, lựa chọn các phần tử trong mạch lực  
Chương 3: Tính toán thiết kế mạch điều khiển  
3.1 Cấu trúc mạch điều khiển  
3.2 Chức năng của từng khâu  
3.3 Tính toán mạch điều khiển  
Chương 4: Mô phỏng mạch lực mạch điều khiển  
4.1 Giới thiệu về phần mềm phỏng PSIM  
4.2 Mô phỏng mạch lực mạch điều khiển  
CHƯƠNG 1: KIẾN THỨC TỔNG QUÁT  
1.1 Giới thiệu chung về động cơ kích từ độc lập.  
1.1.1 Đặc điểm cấu tạo và nguyên lý hoạt động.  
Động cơ điện một chiều gồm có 2 phần : Phần tĩnh (stator) và phần động (rôtor)  
A,Phần tĩnh (stator)  
Gồm các phần chính sau:  
a. Cực từ chính:  
Cực từ chính là bộ phận sinh ra từ trường gồm có lõi sắt cực từ và dây quấn kích từ  
lồng ngoài lõi sắt cực từ. Lõi sắt cực từ làm bằng những lá thép kỹ thuật điện. Cực từ được  
gắn chặt vào vỏ nhờ các bulông. Dây quấn kích từ được quấn bằng dây đồng bọc cách điện.  
b. Cực từ phụ:  
Cực từ phụ đặt giữa các cực từ chính và dùng để cải thiện đổi chiều  
c. Gông từ:  
Dùng để làm mạch từ nối liền các cực từ đồng thời làm vỏ máy.  
d. Các bộ phận khác  
- Nắp máy  
- Cơ cấu chổi than.  
B, Phần quay (rotor)  
Gồm các bộ phận sau:  
a. Lõi sắt phần ứng:  
Lõi sắt phần ứng dùng để dẫn từ. thông thường dùng những lá thép kỹ thuật điện dày  
0,5 mm phủ cách điện ở hai đầu rồi ép chặt lại. Trên lá thép có dập hình dạng rãnh để sau  
khi ép lại thì đặt dây quấn vào  
b. Dây quấn phần ứng:  
Dây quấn phần ứng phần sinh ra s.đ.đ và có dòng điện chạy qua. Thường làm bằng  
dây đồng bọc cách điện.Trong máy điện nhỏ thường dùng dây có tiết diện tròn, trong  
máy điện vừa lớn thường dùng dây tiết diện hình chữ nhật. Dây quấn được cách điện với  
rãnh của lõi thép.  
c. Cổ góp:  
Cổ góp hay còn gọi là vành góp hay vành đổi chiều dùng để đổi chiều dòng điện xoay  
chiều thành một chiều. cỏ góp gồm nhiều phiến đồng hình đuôi nhạn cách điện với nhau  
bằng lớp mica dày 0,4 đến 1,2 mm và hợp thành một hình trụ tròn. Đuôi vành góp có cao  
hơn lên một ít để để hàn các đầu dây của các phần tử dây quấn vào các phiến góp được dễ  
dàng.  
d. Các bộ phận khác:  
- Cánh quạt: Dùng để quạt gió làm nguội máy.  
- Trục máy: Trên đó đặt lõi sắt phần ứng, cổ góp, cánh quạt bi. Trục máy thường làm  
bằng thép Cacbon tốt.  
C, Nguyên lý làm việc của động cơ điện một chiều:  
b
n
F
I
®t  
+
a
I
A
B
c
F
®t  
d
-
Hình 1:Sơ đồ nguyên lý làm việc của động cơ điện 1 chiều  
Khi cho điện áp 1 chiều U đặt vào 2 chổi than A và B trong dây quấn phần ứng có  
dòng điện Iư các thanh dẫn ab, cd có dòng điện nằm trong từ trường sẽ chịu lực điện từ Fđt  
tác dụng làm cho rotor quay, chiều lực từ được xác định theo quy tắc bàn tay trái. Khi phần  
ứng quay được nửa vòng vị trí các thanh dẫn ab, cd đổi chỗ nhau do có phiến góp đổi chiều  
dòng điện giữ cho chiều lực tác dụng không đổi đảm bảo động cơ chiều quay không đổi.  
Khi động cơ quay các thanh dẫn cắt từ trường sẽ cảm ứng sức điện động Eư chiều của s.đ.đ  
xác định theo quy tắc bàn tay phải.  
Ở động cơ điện một chiều sức điện động Eư ngược chiều với dòng điện Iư nên Eư còn  
gọi sức phản điện động.  
Phương trình cân bằng điện áp: U= Eư+Rư.Iư  
Trong đó:  
Rư: điện trở phần ứng  
Iư: dòng điện phần ứng ; Eư: sức điện động  
Theo yêu cầu của đề bài ta xét hệ điều chỉnh tốc độ động cơ điên một chiều kích rừ độc  
lập. Động cơ điện một chiều kích từ độc lập có dòng điện kích từ không phụ thuộc vào dòng  
điện phần ứng nghĩa từ thông của động cơ không phụ thuộc vào phụ tải chỉ phụ thuộc  
vào điện áp và điện trở mạch kích từ.  
-
+
U
-
E
I
KT  
IKT  
UKT  
-
+
Hình2 : Sơ đồ nối dây động cơ điện 1 chiều kích từ độc lập  
1.1.2 Phương trình đặc tính cơ  
Đặc tính là quan hệ giữa tốc độ quay và mômen (M) của động cơ.  
Ứng với chế độ định mức (điện áp, tần số, từ thông...) động cơ vận hành ở chế độ định mức  
với đặc tính cơ tự nhiên (Mđm , wđm).  
Đặc tính nhân tạo của động cơ đặc tính khi ta thay đổi các thông số nguồn hay nối  
thêm điện trở phụ, điện kháng vào động cơ.  
Để đánh giá, so sánh các đặc tính cơ người ta đưa ra khái niệm độ cứng đặc tính cơ  
M  
được  
tính như sau  
  
  
lớn (đặc tính cơ cứng) tốc độ thay đổi ít khi M thay đổi  
nhỏ (đặc tính cơ mềm) tốc độ giảm nhiều khi M tăng.  
đặc tính cơ tuyệt đối cứng.  
-
+
U-  
Rf  
E-  
IKT  
CKT  
RKT  
Hình 3: Sơ đồ nguyên lý động cơ điện 1 chiều  
Khi nguồn điện 1 chiều có công suất lớn điện áp không đổi thì mạch kích từ thường  
mắc song song với mạch phần ứng.  
Khi nguồn điện một chiều có công suất không đủ lớn thì mạch điện phần ứng mạch  
kích từ mắc vào 2 nguồn một chiều độc lập.  
Trường hợp Rf= 0:  
U= E + Iư.Rư  
(1)  
Trong đó; E= Ke.  
.n  
(2)  
p.n  
Ke =  
: hệ số sức điện động của động cơ  
60a  
a: số mạch nhánh song song của cuộn dây  
p.n  
K=  
: hệ số cấu tạo của động cơ  
2a  
: tốc độ góc tính bằng rad/s  
p: số đôi cực chính  
N: số thanh dẫn tác dụng của cuộn dây phần ứng.  
Uu  
Ru  
Thế (2) vào (1) ta có:  
=
Iu  
(3)  
K.K.  
Uu  
Ru  
Iu  
Hoặc:  
n=  
(4)  
Ke .Ke .  
Phương trình (4) biểu diễn mối quan hệ n= f(Iư) gọi phương trình đặc tính cơ điện.  
Mặt khác: M= M= K.Ф.Iư (5): là mômen điện từ của động cơ.  
Uu  
Ru  
.M  
Suy ra: n=  
từ độc lập.  
Hoặc:  
phương trình đặc tính cơ của động cơ điện 1 chiều kích  
Ke .Ke ..K  
Uu  
Ru  
(K.)2  
M
=
=
0    
K.  
Trong đó: 0 : tốc độ không tải tưởng  
: độ sụt tốc độ  
Ru Rf  
(K.)2  
Uu  
Từ phương trình đặc tính cơ:  
=
M ta nhận thấy muốn thay đổi tốc độ  
K.  
ta có thể thay đổi , Rf , U.  
M  
 
Trường hợp Rf thay đổi (Uư= Uđm= const; Ф= Фđm= const):Độ cứng đặc tính cơ:  
(Kdm )2  
  
=
giảm. Nếu Rf càng lớn thì tốc độ động cơ càng giảm đồng thời dòng ngắn  
Ru Rf  
mạch và mômen ngắn mạch cũng giảm. Cho nên người ta thường sử dụng phương pháp này  
để hạn chế dòng và điều chỉnh tốc độ động cơ ở phía dưới tốc độ cơ bản.  
Trường hợp thay đổi U< Uđm  
(K)2  
M  
  
U
Tốc độ không tải  
giảm trong khi độ cứng đặc tính cơ  
=
const. Khi  
  
0   
R
K  
u
thay đổi điện áp ta thu được 1 họ các đường đặc tính song song. Phương pháp này được sử  
dụng để điều chỉnh tốc độ động cơ hạn chế dòng khởi động.  
Ảnh hưởng của tthông:  
Udm  
Muốn thay đổi  
ta thay đổi dòng kích từ Ikt khi đó tốc độ không tải   
tăng. Độ  
K  
(K)2  
M  
cứng đặc tính cơ:  
=
giảm.  
  
  
Ru  
1.1.3 Các phương pháp điều chỉnh tốc độ  
Theo lý thuyết máy điện ta có phương trình sau:  
푈 ― 푅 .퐼  
ư
ư
(1.2)  
=  
퐾 .∅  
푘푡  
Từ phương trình trên ta thấy n ( tốc độ của động cơ) phụ thuộc vào từ thông , điện trở  
phần ứng R, điện áp phần ứng U. Vì vậy để điều chỉnh tốc độ của động cơ điện một chiều  
có 3 phương án.  
a. Điều chỉnh tốc độ bằng cách thay đổi từ thông  
Đồ thị đặc tính cơ của động cơ điện một chiều  
Hình 4: Đồ thị đặc tính cơ của động cơ điện một chiều  
Đồ thị trên cho thấy đường đặc tính cơ của động cơ điện một chiều ứng với các giá trị  
khác nhau của từ thông. Khi từ thông giảm thì n tăng nhưng n còn tang nhanh hơn do đó  
0
ta mới thấy độ dốc của các đường đặc tính này khác nhau. Chúng sẽ hội tụ về điểm trên  
trục hoành ứng với dòng điện rất lớn: Iư=U/Rư. Phương pháp cho phép điều chỉnh tốc độ lớn  
hơn tốc độ định mức. Giới hạn trong việc điều chỉnh tốc độ quay bằng phương pháp này là  
1:2; 1:5; 1:8.  
Tuy nhiên có nhược điểm khi sử dụng phương pháp là phải thực hiện các biện pháp  
khống chế đặc biệt do đó cấu tạo và công nghệ chế tạo phức tạp, khiến giá thành máy tăng.  
b. Điều chỉnh tốc độ bằng cách thay đổi điện trở phụ Rf trên mạch phần ứng.  
Ta có:  
푈 ― 푅 .퐼  
ư ư  
=  
퐾 .∅  
푘푡  
Từ thông không đổi nên n không đổi, chỉ có  
là thay đổi. Một điều d thấy nữa là do  
∆푛  
0
ta chỉ thể đưa thêm Rf, chứ không thể giảm Rư nên ở đây chie điều chỉnh được tốc độ  
dưới tốc độ định mức.  
Do Rf càng lớn đặc tính càng mềm nên tốc độ sẽ thay đổi nhiều khi tải thay đổi (từ  
đồ thị cho thấy, khi I biến thiên thì ứng với cùng dải biến thiên của I đường đặc tính nào  
mềm hơn tốc đọ sẽ thay đổi nhiều hơn).  
Tuy nhiên phương pháp này làm tang công suất giảm hiệu suất.  
Hình 5: Đồ thị đặc tính khi tải thay đổi  
c. Điều chỉnh tốc độ bằng cách thay đổi điện áp.  
Hình 6: Đồ thị đặc tính khi điện áp thay đổi  
Phương pháp này cho phép điêu chỉnh tốc độ cả tên và dưới định mức. Tuy nhiên do  
cách điện của thiết bị thường chỉ tính toán cho điện áp định mức nên thường giảm điện áp  
U. Khi U giảm thì n giảm nhưng  
hằng số nên tốc độ n giảm. vậy thường chỉ điều  
∆푛  
0
chỉnh tốc độ nhỏ hơn tốc độ định mức. Còn nếu lớn hơn thì chỉ điều chỉnh trong phạm vi rất  
nhỏ.  
Đặc điểm quan trọng của phương pháp là khi điều chỉnh tốc độ thì moomen không đổi  
từ thông và dòng điện phần ứng không thay đổi (M= C . .I )  
M 휃  
ư
Phương pháp này cho phép điều chỉnh tốc độ trong giới hạn 1:10, thậm chí cao hơn có  
thể đến 1:25.  
Phương pháp chỉ dùng cho động cơ điện một chiều kích thích độc lập hoặc song song  
làm việc ở chế độ kích từ độc lập.  
1.2 Giới thiệu chung về bộ băm xung áp một chiều  
1.2.1 Khái niệm, phân loại các bộ băm xung áp một chiều  
a. Khái niệm chung.  
Bộ băm điện áp một chiều cho phép từ nguồn điện một chiều Us tạo ra điện áp tải Ura  
cũng điện áp một chiều nhưng thể điều chỉnh được.  
BBĐ  
Ura  
US  
một  
Ura  
chiều  
t
t1  
t2  
T
Hình 7: Sơ đồ tổng quát và dạng điện áp đầu ra  
Ura là một dãy xung vuông (lý tưởng) độ rộng t1 và độ nghỉ t2. Điện áp ra bằng giá  
trị trung bình của điện áp xung: Ura = γ .Us (γ=t1/T). Nguyên lý cơ bản của các bộ biến đổi  
này là dùng quy luật đóng mở các van bán dẫn công suất một cách có chu kỳ để điều chỉnh  
hệ số γ đảm bảo thay đổi được giá trị điện áp trung bình trên tải.  
b. Phân loại các bộ băm xung áp.  
- Bộ băm xung áp song song  
- Bộ băm xung áp nối tiếp.  
- Bộ băm xung áp song song và nối tiếp hỗn hợp.  
1.2.2 Van IGBT  
IGBT (Insulated Gate Bipolar Transistor): Transistor có cực điều khiển cách ly là một  
linh kiện bán dẫn công suất 3 cực được phát minh bởi Hans W. Beck và Carl F. Wheatley  
vào năm 1982. IGBT kết hợp khả năng đóng cắt nhanh của MOSFET khả năng chịu tải  
lớn của transistor thường. Mặt khác IGBT cũng phần tử điều khiển bằng điện áp, do đó  
công suất điều khiển yêu cầu sẽ cực nhỏ.  
a. Đặc điểm cấu tạo  
IGBT rất giống với MOSFET, điểm khác nhau là  
có thêm lớp nối với collector tạo nên cấu trúc bán  
dẫn p-n-p giữa emiter (tương tự cực gốc) với  
collector (tương tự với cực máng), mà không phải là  
n-n như ở MOSFET. Vì thế thể coi IGBT tương  
đương với một transistor p-n-p với dòng base được  
điều khiển bởi một MOSFET.  
Hình 8: cấu tạo van IGBT  
b. Điều khiển mở van, khóa van  
- Do cấu trúc n-p-n mà điện áp thuận giữa C và E trong chế độ dẫn dòng IGBT  
thấp hơn hẳn so với Mosfet. Tuy nhiên do cấu trúc này làm cho thời gian đóng cắt của  
IGBT chậm hơn so với Mosfet, đặc biệt là khi khóa lại. Trên hình vẽ thể hiện cấu trúc tương  
đương của IGBT với Mosfet và một Tranzitor p-n-p. Ký hiệu dòng qua IGBT gồm hai thành  
phần: i1 dòng qua Mosfet, i2 dòng qua Tranzitor. Phần Mosfet trong IGBT có thể khóa lại  
nhanh chóng nếu xả hết được điện tích giữa G và E, do đó dòng i1= 0, tuy nhiên i2 sẽ không  
suy giảm nhanh chóng được do lượng điện tích lũytrong (tương đươngvới bazo của cấu trúc  
p-n-p) chỉ thể mất đi do quá trình tự trung hòa điện tích. Điều này xuất hiện vùng dòng  
điện kéo dài khi khóa IGBT.  
- Sơ đồ thử nghiệm một khóa IGBT:  
Hình 9: Sơ đồ thử nghiệm IGBT  
Quá trình mở của IGBT  
- Quá trình mở IGBT diễn ra giống với quá trình này Mosfet khi điện áp điều khiển  
vào tăng tử 0 đến giá trị Ug. Trong thời gian trễ khi mở Io tín hiệu điều khiển nạp điện cho  
tụ Cgc làm điện áp giữa cực điều khiển và emite tăng theo quy luật hàm mũ từ 0 đến giá trị  
ngưỡn Uge( 3 đến 5v). Chỉ bắt đầu từ đó Mosfet trong cấu trúc của IGBT mới bắt đầu mở  
ra. Dòng điện giữa colecto-emite tăng theo quy luật tuyến tính từ 0 đến dòng tải Io trong  
thời gian Tr.Trong thời gian Tr điện áp giữa cực điểu khiển và emite tăng đến giá trị Uge  
xác định giá trị dòng Io qua colecto. Do diode Do còn đang dẫn dòng tải Io nên điện áp Uce  
vẫn bị găm lên mức điện áp nguồn 1 chiều Udc. Tiếp theo quá trình mở diễn ra theo 2 giai  
đoạn T1 và T2. Trong suốt hai giai đoạn này điện áp giữa cực diều khiển ginguyên Uge để  
duy trì dòng Io, do dòng điều khiển hoàn toàn là dòng phóng tụ Cgc. IGBT vẫn làm việc  
trong chế đô tuyến tính. Trong giai đoạn đầu diễn ra quá trình khóa và phục hổi của diode  
Do dòng phục hồi của diode Do tạo nên xung dòng trên mức dọng Io của IGBT. Điện áp  
Uce bắt đầu giảm.IGBT chuyển điểm làm việc qua vùng chế độ tuyến tính để sang vùng bão  
hòa. Giai đoạn 2 tiếp diễn quá trình giảm điện trở trong vùng thuần trở của colecto dẫn đến  
điện trở colecto-emite về đến giá trị Ron khi bão hòa hoàn toàn Uce= IoRon.  
Sau thời gian mở Ton khi tụ C đã phóng điện xong, điện áp giữa cực điều khiển và  
emito tiếp tục tăng theo quy luật hàm mũ với hằng số thời gian CR đến giá trị cuối cùng  
Ug.  
Hình10: Quán trình khóa van IGBT  
Quá trình khóa IGBT  
Hình 11: Quán trình khóa van IGBT  
c. Các thông số cơ bản của van  
Khi chọn van IGBT ta cần chú ý đến các thông số cơ bản Uce max, Uce bão hòa, Ic (A),  
P (w), R(K/W).  
1.2.3 Phân tích sơ đồ băm xung một chiều đảo chiều  
Ở đây ta sử dụng van bán dẫn IGBT. Bộ BXMC dùng van điều khiển hoàn toàn  
IGBT có khả năng thực hiện điều chỉnh điện áp và đảo chiều dòng điện tải .  
Trong các hệ truyền động tự động có yêu cầu đảo chiều động  do đó bộ biến đổi  
này thường hay dùng để cấp nguồn cho động cơ một chiều kích từ độc lập có nhu  
cầu đảo chiều quay.  
Các van IGBT làm nhiệm vụ khoá không tiếp điểm .Các Điôt Đ1,Đ2,Đ3,Đ4 dùng.để  
trả năng lượng phản kháng về nguồn thực hiện quá trình hãm tái sinh.  
Có các phương pháp điều khiển khác nhau như : Điều khiển độc lập,điều khiển không  
đối xứng điều khiển đối xứng .  
Hình 12: Sơ đồ mạch lực  
a.Phương pháp điều khiển độc lập  
Nếu ta muốn động cơ chạy theo chiều nào thì ta sẽ chỉ cho một cặp van chạy ,cặp còn lại  
sẽ khoá.  
+Muốn cho động cơ quay thuận cho S1,S2 dẫn ,S3,S4 nghỉ .  
+Muốn cho động cơ quay nghịch cho S1,S2 nghỉ ,S3,S4 dẫn .  
b.Phương pháp điều khiển riêng  
Chế độ hoạt động:  
+Trong khoảng 1: S và S được kích dẫn, S và S được kích tắt, động cơ được nối với  
1
2
3
4
nguồn U, dòng qua phần ứng tăng đến giá trị I  
.
max  
+Trong khoảng 2:S và S được kích tắt,S và S được kích dẫn,nhưng do tải có tính  
1
2
3
4
cảm kháng nên dòng điện phần ứng khép mạch qua D và D về nguồn, S và S bị đạt  
3
4
3
4
điện áp ngược bởi hai diode D và D nên khoá, dòng i giảm từ I  
về 0  
3
4
d
max  
+Trong khoảng 3:S và S được kích dẫn, điện áp đặt lên động cơ là –U, dòng i tăng  
3
4
d
theo chiều ngược lại (giảm t0 về I  
theo chiểu dương).  
min  
+Trong khoảng 4: S và S được kích tắt, S và S được kích dẫn, nhưng do trước đó  
3
4
1
2
dòng i chạy theo chiều ngược lại nên dòng i tiềp tục chảy theo chiều cũ, khép mạch qua  
d
d
các diode D và D về nguồn; S và S bị đặt điện áp ngược bởi hai diode D và D phân  
1
2
1
2
1
2
cực thuận nên khoá, do đó i giảm theo chiều ngược lại tI  
min  
về 0.  
d
c.Phương pháp điều khiển không đối xứng  
Giả sử động cơ quay theo chiều thuận (động cơ sẽ làm việc ở góc phần tư thứ 1và thứ  
2) tương ứng với cặp van S1,S2 làm việc ,S3 luôn bị khoá ,S4 được đóng mở ngược pha với  
S1.  
Bộ BXMC có 3 trạng thái làm việc :  
Trạng thái 1: E>E : Động cơ làm việc ở góc phần tư thứ nhất .Năng lượng cấp cho  
t
động cơ được cấp từ nguồn thông qua các van S1,S2 dẫn trong khoảng 0 t .  
1
+Trong khoảng t T :Năng lượng tích trữ trong điện cảm sẽ duy trì cho dòng điện theo  
1
chiều cũ và khép mạch qua S2,Đ4.  
Trạng thái 2: E<E : Động cơ làm việc ở góc phần tư thứ 2 (chế độ hãm)  
t
+Trong khoảng 0 t :Động cơ trả năng lượng về nguồn thông qua các Điôt Đ1,Đ2  
1
(I =I =I )  
Đ1 Đ2 t  
+Trong khoảng t T :S dẫn ,dòng tải khép mạch qua Đ ,S (I =I =I )  
2 4 Đ2 S4 t  
1
4
Trạng thái 3: E=E :  
t
+Trong khoảng 0 t : E > E :Động cơ trả năng lượng về nguồn qua Đ Đ  
0 t  
1
2
(I =I =I )  
Đ1 Đ2 t  
+Trong khoảng t t : E>E : Động cơ làm việc ở chế độ động cơ Năng lượng từ  
0 1  
t
nguồn qua S , S cấp cho động cơ  
1
2
+Trong khoảng t t : S khóa ,S mở .Năng lượng tích luỹ trong điện cảm s cấp  
1 2 1  
4
cho động cơ và duy trì dòng điện qua Đ ,Đ  
2
4
+Trong khoảng t T :Khi năng lượng dự trữ trong điện cảm hết ,suất điện động động cơ  
2
sẽ đảo chiều dòng điện và dòng tải sẽ khép mạch qua S ,Đ  
4
2
Để động cơ làm việc theo chiều ngược lại ,luật điều khiển các van sẽ thay đổi theo chiều  
ngược lại. Trong trường hợp này, van  
và S dẫn ngược nhau, van  
luôn dẫn, van  
4 1  
2
3
luôn khóa.  
Các biểu thức tính toán:  
+ Giá trị dòng trung bình qua tải  
di  
Ta có L. t + R.it + E = U  
dt  
1
T
di  
1
T
1
T
1
T
T
T
T
T
t
Do đó  
.
+
+
.dt =  
.dt  
t
L.  
R.it dt  
E  
U  
t
dt  
0
0
0
0
R.It + E = γ U  
=> It =  
γU ― E  
R
1  
L
U(1 b  
)(1 a .b )  
1 1  
1
+ Dòng trung bình qua van Is =  
.
T.(1 a )  
1
R
t  
t
n
τ
τ
Với a =  
b =  
1
Rút gọn ta có Is = γIt  
e
e
1
+Dòng trung bình qua Diot  
1  
E
R
U.L.(1 a .b )(1 b  
1
)
1
1
ID =  
-
I
(1 ― γ) = (1 ― 훾)  
t
1 a  
1
+ GIá trị trung bình điện áp ra tải Ut = γU  
Vậy để điều khiển động cơ ta chỉ cần điều khiển γ để điều chỉnh điện áp ra tải  
CHƯƠNG 2: NGHIÊN CỨU TÍNH TOÁN, THIẾT KẾ MẠCH LỰC  
2.1 Thiết kế mạch lực  
Sơ đồ mạch lực như sau:  
Chức năng từng phần tử trong mạch:  
- Nguồn V: điện áp một chiều cung cấp cho động cơ.  
- Diot: bảo vện điện áp ngược đặt lên 2 đầu của van IGBT  
2.2 Tính toán lựa chọn các phần tử trong mạch  
a) Tính toán động cơ:  
Thông số động cơ: P= 1kW, Udm= 200V, Idm= 10A, Ikt=0.5A, ndm=3000v/p  
Tốc độ định mức của động cơ:  
3000  
(rad/s)  
= 314  
9.55  
푑푚  
푑푚=  
=
9.55  
Điện trở phần ứng  
푃푑푚  
1000  
= 0.5(1-  
)= 0.5(1-  
)= 0.25(Ω).  
ư
푈푑푚.퐼푑푚  
200.10  
Điện áp phần ứng:  
=Udm- . Idm= 200-0.27x10=220 - 2.5= 117.5 v  
ư
ư
b) Lựa chọn Diot:  
Diot công suất được lựa chọn dựa vào các yếu tố cơ bản: dòng tải, sơ đồ đã chọn, điều  
kiên tản nhiệt, điện áp làm việc. Các thông số cơ bản của van Diot được tính toán như sau:  
khi bỏ qua sự sụt áp trên các van  
+Dòng điện trung bình chạy qua Diode I  
D =  
(1- γ )I Với giá trị dòng điện định mức  
t
động cơ là I  
=18(A)  
tđm  
Chọn chế độ làm mát là van có cánh toả nhiệt với đủ diện tích bề mặt và có quạt  
thông gió, khi đó dòng điện làm việc cho phép chạy qua van lên tới50 % Idm  
Lúc đó dòng điện qua van cần chọn : I  
= k I =18/0.5=36(A)  
i max  
đmv  
Qua các biểu đồ ta thấy :Điện áp ngược cực đại đặt lên mỗi Diode (bỏ qua sụt áp  
trên các van ) là: U =E=200(V)  
ngmax  
Chọn hệ số quá điện áp k = 2 nên U  
=k .U = 2*200=400(V).  
ngv u ngmax  
u
c) Lựa chọn van IGBT  
Xuất phát từ yêu cầu về công nghệ ta phải chọn van bán dẫn loại van điều khiển hoàn  
toàn là IGBT.  
+Tính dòng trung bình chạy qua van: Qua phân tích các mạch lực trên ta thấy:  
Dòng điện trung bình chạy qua van lµ : I = γ I  
S
t
Với giá trị dòng điện định mức động cơ là I  
tđm  
=18(A)  
+ Chọn chế độ làm mát là van có cánh toả nhiệt với đủ diện tích bề mặt và có quạt  
thông gió, khi đó dòng điện làm việc cho phép chạy qua van lên tới 50 % Idm.  
Lúc đó dòng điện qua van cần chọn : I  
= k I =18/0.5=36(A).  
i max  
đmv  
Qua các biểu đồ ta thấy :Điện áp ngược cực đại đặt lên mỗi Diode (bỏ qua sụt áp trên  
các van ) là U =E=400(V).  
ngmax  
Chọn hệ số quá điện áp k = 2 nên U  
=k .U  
ngv u ngmax  
= 2*200=400(V).  
u
Dòng  
Điện áp  
Vcemax  
(V)  
Điện áp Công suất  
điện  
ICmax (A) ở  
25oC  
R
(K/R)  
Loại  
NSX  
Vgeth  
(V)  
Ptotmax  
(W)  
eupec  
600  
75  
5,5  
250  
0.5  
BSM50GB60DLC  
GmbH  
CHƯƠNG 3: TÍNH TOÁN THIẾT KẾ MẠCH ĐIỀU KHIỂN  
3.1 Cấu trúc tổng quát của mạch điều khiển  
Sơ đồ khối mạch điều khiển:  
Tạo điện áp  
tam giác  
So sánh  
Logic và  
phân xung  
Khâu xử lý  
tín hiệu  
Cực điều  
khiển  
IGBT  
Khâu tạo  
điện áp  
điêu khiển  
Uph  
3.2 Chức năng của từng khâu  
a) Khâu tạo dao động và khâu tạo điện áp tam giác.  
Người ta thường dùng khuếch đại thuật toán để tạo ra xung chữ nhật và xung  
giác.  
Bằng việc nối mạch Trigger Smith nối tiếp với mạch tích phân có phản hồi sẽ tạo  
nên dao động: xung chữ nhật ở đầu ra mạch Trigger Smith và xung tam giác ở đầu  
ra OA2. Dạng của điện áp dao động hình chữ nhật điện áp răng cưa  
Tải về để xem bản đầy đủ
docx 31 trang yennguyen 28/03/2022 6020
Bạn đang xem 20 trang mẫu của tài liệu "Đồ án Thiết kế bộ băm xung áp một chiều có đảo chiều", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

File đính kèm:

  • docxdo_an_thiet_ke_bo_bam_xung_ap_mot_chieu_co_dao_chieu.docx