¹³C chemical shift predictions for bakuchiol ‒ A recently discovered agent against organ damage

Nguyen Thi Nhu Y, Nguyen Trong Thien / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 02(45) (2021) 58-64  
58  
02(45) (2021) 58-64  
13C chemical shift predictions for bakuchiola recently discovered agent  
against organ damage  
Tính toán độ dịch chuyển hóa học 13C của bakuchioltác nhân mới điều trị tổn thương  
các cơ quan  
Nguyen Thi Nhu Ya, Nguyen Trong Thiena,b*  
Nguyn Thị Như Ý a, Nguyn Trng Thina,b*  
aFaculty of Pharmacy, College of Medicine and Pharmacy Duy Tan University, Da Nang 550000, Vietnam  
bKhoa Dược, Trường Y- Dược, Đại học Duy Tân, Đà Nẵng, Việt Nam  
bInstitute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam  
bViện Nghiên cứu và Phát triển Công nghệ Cao, Đại học Duy Tân, Đà Nẵng, Việt Nam  
(Ngày nhận bài: 03/12/2020, ngày phản biện xong: 07/01/2021, ngày chấp nhận đăng: 13/03/2021)  
Abstract  
The calculations of 13C NMR chemical shifts for bakuchiol, a promising anti-aging agent, were performed using 11  
functionals (B3LYP, B3PW91, BPV86, CAM-B3LYP, HCTH, HSEH1PBE, mPW1PW91, PBEPBE, TPSSTPSS, and  
ωB97XD) and 10 common basis sets (3-21G, 6-31G(d,p), 6-31G(d,3p), 6-31G(3d,p) 6-31G++(d,p), DGDZVP,  
DGDZVP2, LANL2DZ, LANL2MB) to compare with experimental data. While functionals did not strongly impact the  
computed 13C chemical shifts, basis sets showed a significant influence on the results. For those functionals, B3LYP,  
B3PW91, CAM-B3LYP, HSEH1PBE, mPW1PW91, and ωB97XD were found to have strong correlations (r2 ≥ 0.9987)  
and low errors (CMAEs ≤ 1.96 ppm and CMAEs ≤ 2.49 ppm); among the tested basis sets 3-21G, DGDZVP provided  
the best results (r2 ≥ 0.9980, CMAEs ≤ 2.37 ppm and CMAEs ≤ 2.67 ppm). These results would allow meaningful  
predictions of 13C chemical shifts for bakuchiol.  
Keywords: 13C chemical shifts; NMR; DFT functionals; basis sets; bakuchiol.  
Tóm tắt  
Phổ 13C của bakuchiol, tác nhân chống lão hóa, được tính toán bằng 11 hàm mật độ (B3LYP, B3PW91, BPV86, CAM-  
B3LYP, HCTH, HSEH1PBE, mPW1PW91, PBEPBE, TPSSTPSS, và ωB97XD) và 10 mức lý thuyết (3-21G, 6-  
31G(d,p), 6-31G(d,3p), 6-31G(3d,p) 6-31G++(d,p), DGDZVP, DGDZVP2, LANL2DZ, LANL2MB) nhằm so sánh với  
dữ liệu thực nghiệm. Trong khi các hàm mật độ thể hiện ảnh hưởng nhỏ lên độ dịch chuyển hóa học 13C, các kết quả  
tính toán bằng mức lý thuyết cho thấy sự phân hóa rộng hơn về độ chính xác. B3LYP, B3PW91, CAM-B3LYP,  
HSEH1PBE, mPW1PW91, và ωB97XD có độ tương quan cao (r2 ≥ 0.9987) và lỗi thấp (CMAEs ≤ 1.97 ppm và  
CMAEs ≤ 2.49 ppm); trong các mức lý thuyết, 3-21G, DGDZVP cho các kết quả với độ chính xác cao (r2 ≥ 0.9980,  
CMAEs ≤ 2.37 ppm and CMAEs ≤ 2.67 ppm).  
Từ khóa: Phổ 13C; NMR; hàm DFT; mức lý thuyết; bakuchiol.  
*Corresponding Author: Nguyen Trong Thien; Faculty of Pharmacy, College of Medicine and Pharmacy Duy Tan  
University, Da Nang 550000, Vietnam; Institute of Research and Development, Duy Tan University, Da Nang 550000,  
Vietnam  
Nguyen Thi Nhu Y, Nguyen Trong Thien / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 02(45) (2021) 58-64  
59  
1. Introduction  
proliferation of various cancer cells, including  
stomach, breast, and skin cancer cells and  
liverfibrosis via promoting myofibroblast  
apoptosis. It relieves the hepatotoxic of  
multiple toxicants by suppressing oxidative  
Bakuchiol (Figure 1), a prenylated phenolic  
monoterpene isolated from the fruit of Psoralea  
corylifolia, has recently shown a variety of  
pharmacological effects such as antioxidant,  
anti-bacterial, anti-inflammatory, anti-aging,  
and estrogen-like effects[1][2]. It also has  
protective effects in the heart, liver skin, and  
other organs. In addition, bakuchiol inhibits the  
stress  
and  
inflammatory  
changes[3].  
Understanding the structure of bakuchiol would  
provide insights into its pharmacological  
effects.  
Figure 1. (A) Bakuchiol and (B) its optimized structure at the IEFPCM(CHCl3)/B3LYP-631G(d,p) level of theory with  
numbered carbons (H atoms were omitted for clarity).  
The combination of experimental and  
computational NMR techniques has been a  
strong tool for providing the structural  
information of biologically active natural  
products, which can support the difficult  
assignments and the confirmation of their  
structures and provide valuable insights into the  
electronic environments of active NMR nucleus  
[4][5][6]. The gauge-including atomic orbitals  
(GIAO)/density functional theory (DFT)  
method are generally accepted as a standard  
method in computing shielding constants due to  
its reliability and applicability [7][8][9]. The  
accuracy of calculated chemical shifts typically  
depends on an appropriate combination of  
exchange-correlation functionals and basis sets  
[10]. Aimed to find suitable methods with high  
accuracy, this present study evaluated 11 DFT  
functionals and 11 common basis sets in the  
calculations of 13C chemical shifts for  
bakuchiol.  
2. Computational methods  
All calculations were performed using the  
Gaussian09 [11]. Geometry optimizations of  
bakuchiol  
were  
performed  
at  
the  
IEFPCM(CHCl3)/B3LYP/6-31G(d,p) level[12][13].  
Subsequent frequency calculations ensured that  
a potential energy surface (PES) local  
minimum was attained during the energy  
minimization. Cartesian coordinates of the  
resulting structures are given in the Supporting  
Information.  
The following 11 functionals coupled with  
6-31G(d,p) [14] and 10 basis set coupled with  
B3LYP [15] were evaluated:  
- Funtionals: B3LYP (Becke’s 3-parameter  
hybrid functional[16] using B exchange[17]  
and LYP correlation),[15] B3PW91 (Perdew  
and Wang’s 1991 gradient-corrected correlation  
functional),[18][19] BPV86 (Perdew’s 1986  
functional),[16][20][21] CAM-B3LYP (Handy  
Nguyen Thi Nhu Y, Nguyen Trong Thien / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 02(45) (2021) 58-64  
60  
and co-workers’ long-range corrected version  
of B3LYP using the Coulomb-attenuating  
method),[22] HCTH (Hamprecht-Cohen-Tozer-  
13C. Computed results were evaluated using  
mean absolute value (│Δδ│/ppm, Equation 4);  
corrected mean absolute error (CMAE/ppm,  
Equation 5); corrected root mean squared error  
(CRMSE/ppm, Equation 6); and the Pearson  
correlation coefficient (r2). The smaller values  
of CMAE and CRMSE indicate smaller errors  
and the larger value of r2 means a stronger  
Handy  
GGA  
functional),[23][24][25]  
HSEH1PBE (The exchange part of the screened  
Coulomb potential of Heyd, Scuseria, and  
Ernzerhof),[26][27] LSDA (Local spin-density  
approximation),[28]  
mPW1PW91  
(mPW  
exchange and PW91 correlation),[29][30]  
PBEPBE (The functional of Perdew, Burke,  
and Ernzerhof),[31] TPSSTPSS (The exchange  
component of the Tao-Perdew-Staroverov-  
Scuseria),[32][33] and ωB97XD (Head-Gordon  
and coworkers’ dispersion corrected long-range  
corrected hybrid functional)[34][35].  
correlation  
between  
theoretical  
and  
experimental data. Error calculations and linear  
correlations were performed using Microsoft  
Excel 2013.  
(1)  
(2)  
(3)  
(4)  
- Basis sets: Pople’s 3-21G, 6-31G(d,p), 6-  
31G(3d,p), 6-31G(d,3p), 6-31++G(d,p), and 6-  
311G;[36][37][14] DGDZVP, DGDZVP2 ;[38]  
LANL2MB and LANL2DZ (Los Alamas  
ECP).[39][40]  
(5)  
(6)  
Unless specified otherwise, single-point  
NMR GIAO calculations were carried out in  
gas phase[41]. The GIAO NMR results were  
observed and extracted using GaussView06.  
Each optimized structure was used for  
3. Results and Discussion  
3.1. The evaluation of 11 DFT functionals  
11 Functionals were evaluated, and the  
results were showed in Table 1 and Figure 2.  
The functionals were sorted alphabetically by  
name. Table 1 shows statistical parameters  
using 11 different DFT functionals coupled  
with 6-31G(d,p) basis set and Figure 2  
illustrates absolute deviations. Overall, the  
correlation coefficients and error results  
indicate that the calculations provided a  
qualitatively accurate description of the 13C  
NMR chemical shifts. The CMAE and CRMSE  
values were in the ranges of 1.44 to 2.62 ppm  
and 1.72 to 3.53 ppm, respectively. The  
coefficients of determination (r2) were above  
0.9976 for all tested functionals. C3 and C16  
were consistently observed with the noticeable  
deviations ranged from 2.18 to 6.28 ppm and  
2.39 to 4.98 ppm, respectively (Figure 2). The  
computing the  
shielding constants (  
corresponding isotropic  
. The chemical shifts  
(
) given in the Supporting Information were  
obtained using Equation 1. For both 13C NMR  
calculations, an average of values of  
equivalents atoms was assumed. For example, a  
single proton/carbon signal is observed for the  
two symmetrically aromatic CH groups of  
bakuchiol. To reduce the systematic error of the  
calculations, the linear regression analysis of  
the calculated chemical shifts versus the  
experimental ones (  
(Equation 2) were  
performed and the scaled chemical shifts (  
)
were computed according to Equation 3. As  
reference had a negligible impact on the linear  
regression analysis, the fix values of 197 ppm  
was chosen as TMS shielding constants for  
Nguyen Thi Nhu Y, Nguyen Trong Thien / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 02(45) (2021) 58-64  
61  
two best performers with strong correlations  
and low errors for C calculations were CAM-  
ppm, and r2 = 0.9991), ωB97XD (CMAE =  
1.48ppm, CRMSE = 1.80 ppm, and r2 = 0.9990).  
13  
B3LYP (CMAE = 1.44 ppm, CRMSE = 1.72  
Table 1. 13C NMR chemical shifts of bakuchiol calculated using 11 functionals  
δ(13C)  
Entry  
Functional  
B3LYP  
B3PW91  
BPV86  
CAM-B3LYP  
HCTH  
HSEH1PBE  
LSDA  
mPW1PW91  
PBEPBE  
TPSSTPSS  
ωB97XD  
r2  
CMAE  
1.79  
1.97  
2.36  
1.44  
2.23  
1.91  
2.62  
1.91  
1.91  
2.50  
1.48  
CRMSE  
2.33  
2.49  
3.17  
1.72  
2.96  
2.34  
3.53  
2.36  
2.34  
2.94  
1.80  
1
2
3
4
5
6
7
8
9
0.9987  
0.9988  
0.9978  
0.9991  
0.9981  
0.9989  
0.9976  
0.9989  
0.9989  
0.9981  
0.9990  
10  
11  
Figure 2. Absolute deviations of 13C chemical shift calculations using 11 functionals.  
3.2. The evaluation of 11 basis sets  
ranged from 1.79 to 4.97 ppm and 2.22 to 5.13  
ppm, respectively (Table 3). The largest  
deviations were found for C3, C11, and C16  
with CMAE and CRMSE values in the ranges  
of 1.05 to 6.25 ppm, 0.46 to 6.11 ppm, and 2.13  
to 4.47 ppm, respectively (Figure 1).  
11 Basic sets were employed for computing  
13C chemical shifts of bakuchiol. In general, the  
calculated results were observed with low  
associated errors and strong linear correlations  
(r2 ≥ 0.9958). CMAE and CRMSE values were  
Nguyen Thi Nhu Y, Nguyen Trong Thien / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 02(45) (2021) 58-64  
62  
13  
Table 2. The calculated C NMR chemical shifts of Bakuchiol in CHCl3 using 10 basic sets.  
All chemical shifts, CMAEs, and CRMSEs are in ppm.  
δ(13C)  
Entry  
Basis set  
r2  
CMAE CRMSE  
1
2
3
4
5
6
7
8
10  
11  
3-21G  
0.9981  
0.9987  
0.9971  
0.9975  
0.9958  
0.9976  
0.9985  
0.9962  
0.9970  
0.9970  
2.37  
1.79  
2.62  
2.33  
3.35  
1.93  
2.19  
4.97  
3.13  
3.80  
2.67  
2.33  
3.21  
2.67  
3.43  
2.71  
2.22  
5.13  
3.28  
3.81  
6-31G(d,p)  
6-31G(3d,p)  
6-31G(d,3p)  
6-31++G(d,p)  
6-311G  
DGDZVP  
DGDZVP2  
LANL2DZ  
LANL2MB  
Figure 3. Absolute deviations of 13C chemical shift calculations using 10 basis sets.  
4. Conclusion  
excellent correlations between theoretical and  
experimental data (r2 > 0.9987) were observed.  
Given such high degree of accuracy achieved in  
calculating 13C chemical shifts of bakuchiol,  
this work can be useful for supporting the  
assignments of the experimental NMR spectra of  
bakuchiol and similar retinoid compounds.  
Further studies on the chemical shift calculations  
of these compounds are under-investigation.  
We have performed the evaluation of 11  
DFT functionals and 11 basis sets using GIAO  
method on the calculation of 13C chemical  
shifts for bakuchiol. Our results showed the two  
best performing functionals were CAM-B3LYP  
(CMAEs ≤ 1.44 ppm) and ωB97XD (CRMSEs  
≤ 1.80 ppm), and the best basis set was 6-  
31G(d,p) (CMAEs ≤ 1.79 ppm). In these cases,  
Nguyen Thi Nhu Y, Nguyen Trong Thien / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 02(45) (2021) 58-64  
63  
Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.  
Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,  
T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F.  
Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N.  
Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J.  
Normand, K. Raghavachari, A. Rendell, J.C. Burant,  
S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M.  
Millam, M. Klene, J.E. Knox, J.B. Cross, V.  
Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E.  
Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.  
Pomelli, J.W. Ochterski, R.L. Martin, K.  
Morokuma, V.G. Zakrzewski, G.A. Voth, P.  
Salvador, J.J. Dannenberg, S. Dapprich, A.D.  
Daniels, O. Farkas, J.B. Foresman, J. V. Ortiz, J.  
Cioslowski, F.D. J., Gaussian 09, Revision D.01,  
(2013).  
References  
[1] S. Dhaliwal, I. Rybak, S.R. Ellis, M. Notay, M.  
Trivedi, W. Burney, A.R. Vaughn, M. Nguyen, P.  
Reiter, S. Bosanac, H. Yan, N. Foolad, R.K.  
Sivamani, Prospective, randomized, double‐blind  
assessment of topical bakuchiol and retinol for  
facial photoageing, Br. J. Dermatol. 180 (2019)  
[2] T. Esumi, C. Yamamoto, Y. Fukuyama, A short  
synthesis of (+)-bakuchiol, Synlett. 24 (2013) 1845–  
[3] Z. Xin, X. Wu, T. Ji, B. Xu, Y. Han, M. Sun, S.  
Jiang, T. Li, W. Hu, C. Deng, Y. Yang, Bakuchiol:  
A newly discovered warrior against organ damage,  
Pharmacol.  
Res.  
141  
(2019)  
208213.  
[12] J. Tomasi, B. Mennucci, R. Cammi, Quantum  
mechanical continuum solvation models, Chem.  
Rev. 105 (2005) 29993093.  
[4] H.D. Watts, M.N.A. Mohamed, J.D. Kubicki,  
Comparison of multistandard and TMS-standard  
calculated NMR shifts for coniferyl alcohol and  
application of the multistandard method to lignin  
dimers, J. Phys. Chem. B. 115 (2011) 19581970.  
[13] J. Tomasi, B. Mennucci, E. Cancès, The IEF version  
of the PCM solvation method: An overview of a  
new method addressed to study molecular solutes at  
the QM ab initio level, in: J. Mol. Struct.  
THEOCHEM, Elsevier, 1999: pp. 211226.  
[14] M.M. Francl, W.J. Pietro, W.J. Hehre, J.S. Binkley,  
M.S. Gordon, D.J. DeFrees, J.A. Pople, Self-  
consistent molecular orbital methods. XXIII. A  
polarization-type basis set for second-row elements,  
J. Chem. Phys. 77 (1982) 36543665.  
1
[5] J.S. Lomas, H NMR spectra of alcohols and diols  
in chloroform: DFT/GIAO calculation of chemical  
shifts, Magn. Reson. Chem. 52 (2014) 745754.  
[6] B.G. Diehl, H.D. Watts, J.D. Kubicki, M.R. Regner,  
J. Ralph, N.R. Brown, Towards lignin-protein  
crosslinking: Amino acid adducts of a lignin model  
quinone methide, Cellulose. 21 (2014) 13951407.  
[7] K. Wolinski, J.F. Hinton, P. Pulay, Efficient  
Implementation of the Gauge-Independent Atomic  
Orbital Method for NMR Chemical Shift  
Calculations, J. Am. Chem. Soc. 112 (1990) 8251–  
[15] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J.  
Frisch, Ab Initio calculation of vibrational  
absorption and circular dichroism spectra using  
density functional force fields, J. Phys. Chem. 98  
(1994) 1162311627.  
[8] J. Gauss, Effects of electron correlation in the  
calculation of nuclear magnetic resonance chemical  
shifts, J. Chem. Phys. 99 (1993) 36293643.  
[16] A.D. Becke, Density-functional thermochemistry.  
III. The role of exact exchange, J. Chem. Phys. 98  
(1993)  
56485652.  
[9] R. Ditchfield, Self-consistent perturbation theory of  
diamagnetism I. A gauge-invariant LCAO method  
for N.M.R. Chemical shifts, Mol. Phys. 27 (1974)  
789807.  
[17] A.D. Becke, Density-functional exchange-energy  
approximation with correct asymptotic behavior,  
Phys.  
Rev.  
A.  
38  
(1988)  
30983100.  
[10] M.A. Iron, Evaluation of the Factors Impacting the  
Accuracy of 13C NMR Chemical Shift Predictions  
using Density Functional Theory - The Advantage  
of Long-Range Corrected Functionals, J. Chem.  
[18] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A.  
Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais,  
Atoms,  
Applications  
molecules,  
of the  
solids,  
and  
surfaces:  
gradient  
generalized  
Theory  
Comput.  
13  
(2017)  
57985819.  
approximation for exchange and correlation, Phys.  
Rev. B. 46 (1992) 66716687.  
[11] M.J. Frisch, J.R. Cheeseman, G. Scalmani, V.  
Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji,  
M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov,  
J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M.  
[19] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A.  
Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais,  
Erratum: Atoms, molecules, solids, and surfaces:  
Nguyen Thi Nhu Y, Nguyen Trong Thien / Tạp chí Khoa học và Công nghệ Đại học Duy Tân 02(45) (2021) 58-64  
64  
Applications  
of the  
generalized  
gradient  
approximation for exchange and correlation  
(Physical Review B (1993) 48, 7, (4978)), Phys.  
Rev. B. 48 (1993) 4978.  
[31] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized  
gradient approximation made simple, Phys. Rev.  
Lett. 77 (1996) 38653868.  
[32] J. Tao, J.P. Perdew, V.N. Staroverov, G.E. Scuseria,  
[20] J.P. Perdew, Density-functional approximation for  
the correlation energy of the inhomogeneous  
electron gas, Phys. Rev. B. 33 (1986) 88228824.  
[21] S.H. Vosko, L. Wilk, M. Nusair, Accurate spin-  
dependent electron liquid correlation energies for  
local spin density calculations: a critical analysis,  
Climbing  
the  
density  
functional  
ladder:  
Nonempirical  
metageneralized  
gradient  
approximation designed for molecules and solids,  
Phys. Rev. Lett. 91 (2003) 146401.  
[33] J.P. Perdew, A. Ruzsinszky, G.I. Csonka, L.A.  
Constantin, J. Sun, Workhorse semilocal density  
functional for condensed matter physics and quantum  
chemistry, Phys. Rev. Lett. 103 (2009) 026403.  
[34] J. Da Chai, M. Head-Gordon, Systematic  
optimization of long-range corrected hybrid density  
functionals, J. Chem. Phys. 128 (2008) 084106.  
Can.  
J.  
Phys.  
58  
(1980)  
12001211.  
[22] T. Yanai, D.P. Tew, N.C. Handy, A new hybrid  
exchange-correlation functional using the Coulomb-  
attenuating method (CAM-B3LYP), Chem. Phys.  
Lett. 393 (2004) 5157.  
[23] F.A. Hamprecht, A.J. Cohen, D.J. Tozer, N.C.  
Handy, Development and assessment of new  
exchange-correlation functionals, J. Chem. Phys.  
109 (1998) 62646271.  
[35] J. Chai, M. Head-Gordon, Long-range corrected  
hybrid density functionals with damped atomatom  
dispersion corrections, Phys. Chem. Chem. Phys. 10  
(2008) 66156620.  
[24] A. Daniel Boese, N.L. Doltsinis, N.C. Handy, M.  
Sprik, New generalized gradient approximation  
functionals, J. Chem. Phys. 112 (2000) 16701678.  
https://doi.org/10.1039/B810189B.  
[36] J. Stephen Binkley, J. A. Pople, W. J. Hehre, Self-  
consistent molecular orbital methods. 21. Small  
split-valence basis sets for first-row elements, J.  
Am. Chem. Soc. 102 (1980) 939947.  
[25] A.D. Boese, N.C. Handy, A new parametrization of  
exchange-correlation  
generalized  
gradient  
approximation functionals, J. Chem. Phys. 114  
(2001) 54975503.  
[37] R. Ditchfield, W.J. Hehre, J.A. Pople, Self-  
consistent molecular-orbital methods. IX. An  
extended gaussian-type basis for molecular-orbital  
studies of organic molecules, J. Chem. Phys. 54  
[38] C. Sosa, J. Andzelm, B. C. Elkin, E. Wimmer, K. D.  
Dobbs, D. A. Dixon, A local density functional  
study of the structure and vibrational frequencies of  
molecular transition-metal compounds, J. Phys.  
Chem. 96 (1992) 66306636.  
[26] J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid  
functionals based on a screened Coulomb potential,  
J. Chem. Phys. 118 (2003) 82078215.  
[27] M. Ernzerhof, J.P. Perdew, Generalized gradient  
approximation to the angle- and system-averaged  
exchange hole, J. Chem. Phys. 109 (1998) 3313–  
[28] J.P. Perdew, Y. Wang, Accurate and simple analytic  
representation of the electron-gas correlation  
energy, Phys. Rev. B. 45 (1992) 1324413249.  
[29] J.P. Perdew, K. Burke, Generalized gradient  
approximation for the exchange-correlation hole of  
a many-electron system, Phys. Rev. B - Condens.  
Matter Mater. Phys. 54 (1996) 1653316539.  
[30] C. Adamo, V. Barone, Exchange functionals with  
improved long-range behavior and adiabatic  
connection methods without adjustable parameters:  
The mPW and mPW1PW models, J. Chem. Phys.  
108 (1998) 664675.  
[39] P.J. Hay, W.R. Wadt, Ab initio effective core  
potentials for molecular calculations. Potentials for  
the transition metal atoms Sc to Hg, J. Chem. Phys.  
82 (1985) 270283.  
[40] W.R. Wadt, P.J. Hay, Ab initio effective core  
potentials for molecular calculations. Potentials for  
main group elements Na to Bi, J. Chem. Phys. 82  
[41] T.T. Nguyen, P.Q. Le, J. Helminen, J. Sipilä, The  
1H and 13C chemical shifts of 55 lignin model  
dimers: An evaluation of DFT functionals, J. Mol.  
Struct. 1226 (2021) 129300.  
pdf 7 trang yennguyen 16/04/2022 960
Bạn đang xem tài liệu "¹³C chemical shift predictions for bakuchiol ‒ A recently discovered agent against organ damage", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

File đính kèm:

  • pdfc_chemical_shift_predictions_for_bakuchiola_recently_discove.pdf