Electronic structure and thermoelectric properties of BI2SE3 under oxygen substitution

TẠP CHÍ KHOA HỌC SỐ 20/2017  
93  
ELECTRONIC STRUCTURE AND THERMOELECTRIC PROPERTIES  
OF BI2SE3 UNDER OXYGEN SUBSTITUTION  
Tran Van Quang1, Dinh Thi Men2  
1University of Transport and Communications  
2Hanoi National University of Education  
Abstract: Though thermoelectric effect which enables to convert directly heat into  
electricity has been investigated long time ago, its practical applications have been still  
few due to the low efficiency. Material science focuses on developing the area to increase  
the performance is still under investigation. The best-known thermoelectric materials  
operating at room temperature for the highest efficiency recorded now belong to the class  
of Bi based-chalcogenides materials. In this report, we employ density functional theory in  
local density approximation to study the effect of O substitution on the electronic structure  
and the thermoelectric property of the Bi2Se3 semiconductor. The newly formed compound  
is a fairly large band-gap semiconductor with the value of 0.33 eV. The density of states at  
the conduction band indicates the presence of light bands above Fermi energy which play  
an important role for the considerabe-high electrical conductivity. To explore the  
thermoelectric property, we utilize the solution of the semi-classical Boltzmann equation  
to perform the calculation of the thermoelectric coefficients, namely the Seebeck coefficient  
S, the electrical conductivity σ and the power factor, S2σ. The results show that σ of the  
material in n-type doping greatly increases with the increase of carrier concentration  
whereas S decreases monotonically. The competition between S and σ leads to a relatively  
large power factor, which determines the thermal-electric conversion efficiency of the  
material at high carrier concentration. It indicates that high dopings might benefit for  
obtaining the high thermoelectric performace of this material.  
Keywords: Thermoelectric effect, chalcogenide, Seebeck coefficient, density function theory.  
Email: tranquang@utc.edu.vn  
Received 05 December 2017  
Accepted for publication 27 December 2017  
1. INTRODUCTION  
The thermoelectric effect has been investigated since late 19th century. It allows convert  
directly weaste heat into electricity and vice versa. The temperature gradient induces an  
E ST  
electric field  
, where S is the Seebeck coefficient or the thermopower, T is the  
94  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ HÀ NỘI  
temperature. By contrast, the gradient temperature is occurred in thermoelectric materials  
when current applied. This is so called Peltier effect. In order to qualify the thermoelectric  
performace of a material or a device, one defines the dimensionless figure of merite1,2  
S 2T  
L e  
ZT   
.
(1)  
in which T is the temperature; S the Seebeck coefficient or thermopower; σ the electrical  
conductivity; κe, κLthe electronic and lattice thermal conductivity, respectively. Therefore,  
high ZT value is desired. To satisfy this, one must search for ways to improve S and σ and  
simultaneously to decrease the thermal conductivity, κ=κeL. However, these coefficients  
have inter-relationship in which the increase of σ is accompanied by the increase of κ and  
the decrease of S. Thus, improving ZT is very challenging.  
Semiconductors are the best thermoelectric materials among insulators and metals. The  
highest recorded ZT values at room temperature are in the chalcogenides compounds with  
the values around unity such as Bi2Se3, Bi2Te3, Sb2Te3, PbTe, etc.3–5 Recently, the oxygen  
substitution in the materials resulting in many peculiar properties and manifest new teniques  
to improve ZT.6 Indeed, the oxygen substitution reduces the lattice constant thereby increase  
the mass density of Bi2Se3. This is responsible for the low thermal conductivity of the  
material.7-10 In addition, the distribution of O on Bi2Se3 surface induces topological phase  
which significantly enhances the thermoelectric power factor.11 In this report, we present our  
results of the study of oxygen substitution on the electronic structure and thermoelectric  
properties of Bi2Se3 under of oxygen substitution using first-principles density functional  
theory (DFT) within local density approximation (LDA) and the semiclassical Boltzmann  
Transport Equation.  
2. COMPUTATIONAL DETAILS  
In solid-state physics, the well-know approach to solve the many particle problem is use  
of variational method to minize total energy to seek for the ground state. In order to solve  
this problem systematically, Honhenberg and Kohn formulated the density functional  
theory.12 Latter on, within the theory Kohn and Sham derived a simple equation that enables  
to determine the electron density and energy of system by means of self-consisten solving  
the Kohn-Sham equation. Accordingly, the authors have expressed the total energy function  
of the electronic system through the electron density function, ρ12,13  
   
dr  
E   
Ts  
J  
r
r
E v  
,
(2)  
xc  
TẠP CHÍ KHOA HỌC SỐ 20/2017  
95  
where J is Hatree energy functional representing the Coulomb interaction between electrons,  
Ts  
determinant  
   
is kinetic functional determined via the many-particle wave function in term of Slater  
1r11  
1r22  
...1  
rNN  
2 r11  
2 r22  
...2  
rNN  
1
NI   
det  
.
(3)  
.................................  
N!  
N r11  
N r22  
...N  
rNN  
Minimizing Eq. (2) results in Kohn – Sham equation 13  
HKSi ii  
,
(4)  
is  
N
2
r'  
where  
is Kohn-Sham Halminton,  
HKS   v  
r
dr'vxc  
r
  
r
n    
   
| r r'|  
i  
i
i
i1  
electron density, n is occupation number, vxc[ρ]=δExc[ρ]/δρ is exchange-corelation potential.  
This equation takes the form of a single-particle Schrodinger equation in an external  
field, which can be solved self-consistenly in the following steps14: (1) From the initial  
(guest) density, one determines Kohn-Sham Hamilton, HKS; (2) solving the equation (4) to  
obtain Kohn-Sham orbitals ψ; (3) the density ρ is determined by taking the inner product of  
the Kohn-Sham orbitals ψ; (4) compare the obtained density ρ with the initial density and  
complete a self-consistent loop. The loop is continued until the self-consistent solution is  
archieved. The solution therefore gives eigenvalues εi and total energy of the system.14 The  
exchange correlation potential is approximated depending a specific material and a specific  
property desired. In this report we invoke the local density approximation (LDA) in all the  
calculation.15-17  
For the transport properties, we ultilize the solution of the semiclassical Boltzmann  
Transport Equation for the non-equilibrium distribution function g18  
g  
r,k,t  
r  
k g  
r,k,t  
g  
r,k,t  
g  
r,k,t  
.
(5)  
t  
t  
t  
t  
k  
In the relaxation time approximation, we obtain the transport coefficients which are  
expressed in term of the integral of the transport distribution function (ITD) as  
following2,19,20  
f  
  
ITDe2  
d  
  
ik  
k
k
k
vj  
k
  
vk  
(6)  
ij  
k
Accordingly, the electrical conductivity tensor is derived in term of ITD21  
96  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ HÀ NỘI  
0
ij  
   
ITDij  
,
(7)  
(8)  
as well as the Seebeck coefficient  
1  
1
kj  
ITD0  
ik ITD1  
,
Sij    
eT kx,y,z  
and the thermoelectric power factor  
PF   
S
i2jjk  
.
(9)  
ik  
jxyz  
3. RESULTS AND DISCUSSIONS  
Figure 1. The crystal structure of Bi2O2Se  
The O substitutions into Se in the Bi2Se3 crystal forming the new structure. Due to the  
strong interaction of O with around atoms, the formed structure is to be asymmetric and  
distorted. The Bi2Se3 structure is a rhombohedral structure whereas the newly formed  
structure Bi2O2Se is triclinic with parameters α = β = 146.14o; γ = 48.64o and a = b = c =  
6.67 bohr. Such crystal structure is shown in FIG. 1 in term of a tetragonal conventional-cell  
structure.  
TẠP CHÍ KHOA HỌC SỐ 20/2017  
97  
(b)  
(a)  
(d)  
(c)  
Figure 2. (a) Total density of states and projected density of states of (b) Bi, (c) O and (d) Se  
shown along with the l-like density of states.  
Figure 3. (a) Space and distribution of (b) l-like and (c) total charges in the appropriate space  
By use of the LDA calculation, we compute the total density of states (Total DOS) and  
present the results in Figure.2. The density of state provide transport information especially  
the states near Fermi energy, which play a crutial role in the transport properties of the  
material. Figure.2 (a) - (c) show the density of state contributed by the elemental elements  
98  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ HÀ NỘI  
in the crystal. Figure.2 (d) shows the total contribution of all the elements to the total density  
of state of the crystal. The Fermi energy is set to be zero. Right next to the Fermi level, in  
the valence band, the width of DOS is very large. According to Mahan - Sofo, this would  
lead to an enhancement of S.19 The vanished DOS in the 0~1 eV region shows the band gap  
of the material. In the detailed calculation, the obtained band gap is 0.33 eV. In the  
conduction band the small slope of DOS indicates the light bands to be dominated. This  
shows that the mobility of the electrons is improved leading to the possible high σ. On the  
one hand, σ is increased by increasing the doping level whereas S is expected not to be  
effected much due to the bipolar conduction and Pisarenko relationship.22 This stems from  
the farily large bandgap of 0.33 eV as discussed above.  
The charge distribution in the orbitals and states for all the atom is obtained by  
integrating the appropriate density of state. The results are represented in Figure.3. Note that  
the total valence electrons of a crystal in a primite unit cell are 20. As can be seen, electrons  
are mainly distributed into orbital s and p. The number of electrons occupied in p-orbital is  
most important. Near Fermi energy in the valence band, Se-4p states are emerged to play  
crucial role to contribute the conductivity of the material. Also a relatively large amount of  
charge is in the interstitial region. This means that the transport properties of the crystalline  
Bi2O2Se are highly dependent on the Se element, particularly the Se-4p orbital. In addition,  
the number of electrons in the interstitial area is 40%. Thus, it also plays an important role  
in the transport properties. This is illustrated in Figure.3 (c). Note that the Total DOS for  
each energy value consists of the sum of all density of states of each atom in the muffin-tin  
region and the density of state in the interstitial region (outside the muffin). It indicates that  
near the Fermi energy in the valence band, the density of state due to the contribution of the  
insterstitial region is also large. Hence, they also play an important role to shape the transport  
properties, in particularly, the thermoelectric properties of the material.  
From the ground states, we obtained eigenvalues  
k
as a function of wave vector (see  
eq. (4)). This information identifies the ITD function (eq. (6)) thereby the values of the  
conductivity σ (eq. (7)), the Seebeck coefficient S (eq. (8)) and power factor (eq. (9)).  
Figure. 4 presents the results of the calculation of the Seebeck coefficient S as a two-  
dimensional function as a function of carrier concentration (log10 (n), with n in unit cm-3)  
and temperature T (in unit K). The value of T varies from 0 to 600 K and n varies from  
5x1017cm-3 to 5x1020cm-3. The results show that the magnitude of the S coefficient depends  
strongly on both the temperature and the carrier concentration. When fixing the carrier  
concentration, we find that S increases monotonically with temperature. This increase comes  
from the contribution of the thermal excitation, while the relatively large band gap prevents  
the generation of intrinsic carrier and this is conducive to increase value of S. On the other  
TẠP CHÍ KHOA HỌC SỐ 20/2017  
99  
hand, at temperatures around room temperature, the value of S also decreases monotonically  
with carrier concentration. This result originates from the Pisarenko relationship.22 S is very  
high at high temperatures and low carrier concentration. Thus, in order to increase the S  
coefficient, we need to increase the temperature, while keeping the carrier concentration to  
be low. The value of S can therefore easily reach over 200 μV/K. This value is even greater  
than that of Bi2Te3 which is one of the best thermoelectric material operation at room  
temperature. 23-25  
a)  
b)  
c)  
Figure 4. (a) The Seebeck coefficients S, (b) electrical conductivity σ and (c) power factor S2σ  
100  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ HÀ NỘI  
Figure 5. Thermoelectric power factor S2σ/τ as a function of carrier concentration  
at various temperatures  
For electrical conductivity σ, we present the calculation results in Figure. 4b. The results  
show that σ is almost unchanged with the temperature. The main change here is at low carrier  
concentration. The σ value increases slightly with temperature due to thermal excitation.  
This represents the relatively large bandgap semiconductor as shown above. When doping  
is low, intrinsic carriers are unlikely to be excited by thermal excitation to cross the bandgap,  
even at relatively high temperatures.6 As a result, at high doping level, the carrier  
concentration will not depend much on temperature. At a fixed temperature, σ increases  
almost linearly and monotonically with the carrier concentration.  
Thus, when the carrier concentration is large, σ increases while S decreases. This strong  
competition between σ and S determines the value of ZT (eq. (1)). We calculate the thermal  
power factor PF = S2σ depending on temperatures and carrier concentration. The results are  
shown in Figure 4. Note that the calculation results depend on the constant relaxation time  
constant τ. Thus, for convenience we represent S2σ / τ. From there we see that when the  
carrier concentration increases, the power factor increases significantly.17 It is clear that this  
increase is determined by the sharp increase of σ due to temperature and carrier density. In  
the low carrier concentration, the power factor is determined by S meanwhile in the high  
carrier concentration it is determined by σ.  
To substantiate the dependence of the power factor on the carrier concentration, we  
calculate S2σ/τ as a function of n. The results are presented in Figure. 5. As can be seen, at  
room temperature the optimal carrier concentration is about 5x1020cm-3. It indicates that to  
improve the power factor, the carrier concentration should be increased. In other word,  
making high doping level is a promising method to improve the thermoelectric performance  
of the Bi2O2Se material. This result is consistent with the results of previous published  
reports.21  
TẠP CHÍ KHOA HỌC SỐ 20/2017  
101  
4. CONCLUSION  
By employing first-principles density functional theory within local density  
approximation and the solution of Boltzmann Transport Equation in relaxation time  
approximation, we studied the effect of O substitution on electronic structure and  
thermoeletric properties of Bi2Se3 material in n-type doping. We found that the newly formed  
material is a fairly large band gap semiconductor, Eg=0.33eV. The calculated results show a  
strong dependence of the Seebeck coefficient, the electrical conductivity and the power  
factor on the temperature and the carrier concentration. At low concentrations, the Seebeck  
coefficient plays a crucial role to determine the power factor whereas in high doping levels  
the electrical conductivity dominates the power factor. Due to the relative large bandgap, the  
carrier concentration does not much dependon temperature especially at high doping levels.  
The increase of carrier concentration significantly improves the power factor due to the  
monotonic increase of σ, although S slightly decreases. It suggests that to improve the  
thermoelectric performance of Bi2O2Se, the carrier concentration must be increased. This  
conclusion suggests that experimental studies might optimize the appropriate impurities to  
increase the carrier concentration which is leading to improve the thermal efficiency of the  
material.  
Acknowledgment: This research is funded by Vietnam National Foundation for  
Science and Technology Development (NAFOSTED) under grant number 103.01-2015.11.  
The authors also thank the program for science and technology development of University  
of Transport and Communications.  
REFERENCES  
1. G.J.Snyder and E.S.Toberer (2008), Nat. Mater.7, p.105.  
2. T.Van Quang and M.Kim (2013), J.Appl. Phys.113, p.17A934.  
3. G.J.Snyder, M.Christensen, E.Nishibori, T.Caillat, and B.B.Iversen (2004), Nat.Mater. 3, p.458.  
4. A.J.Minnich, M.S.Dresselhaus, Z.F.Ren, and G.Chen (2009), Energy Environ.Sci.2, p.466.  
5. L.Zhang and D.J.Singh (2010)., Phys.Rev.B 81, p.245119.  
6. T.Van Quang and M.Kim (2017), J.Appl.Phys.122,122, p.245104.  
7. P.Ruleova, C.Drasar, P.Lostak, C.P.Li, S.Ballikaya, and C.Uher,Mater.Chem (2010), Phys.119,  
p.299.  
8. S.D.N.Luu and P.Vaqueiro (2016), J.Mater.2, p.131.  
9. S.D.N.Luu and P.Vaqueiro (2015), J.Solid State Chem.226, p.219.  
10. J.Bardeen and W.Shockley (1950), Phys.Rev.80, p.72.  
11. J.H.Song, H.Jin, and A.J.Freeman (2010), Phys.Rev.Lett.105, p.96403.  
12. P.Hohenberg and W.Kohn (1964), Phys.Rev.136, p.B864.  
13. W.Kohn and L.J.Sham (1965), Phys.Rev.140, p.A1134.  
102  
TRƯỜNG ĐẠI HỌC THỦ ĐÔ HÀ NỘI  
14. E.Wimmer, H.Krakauer, M.Weinert, and A.J.Freeman (1981), Phys.Rev. B 24, p.864.  
15. S.Youn and A.J.Freeman (2001), Phys.Rev. B 63, p.85112.  
16. M.Kim, A.J.Freeman, and C.B.Geller (2005), Phys.Rev. B 72, p.35205.  
17. T.Van Quang and K.Miyoung (2016), J.Korean Phys. Soc. 68, p.393.  
18. N.W.Ashcroft and N.D.Mermin (1976), Solid State Phys.  
19. G.D.Mahan and J.O.Sofo (1996), Proc.Natl.Acad.Sci.U.S. A.93, p.7436.  
20. T.Van Quang and M.Kim (2014), IEEE Trans.Magn.50, p.1000904.  
21. T.Quang, H.Lim, and M.Kim (2012), J.Korean Phys.Soc.61, p.1728  
22. J.P.Heremans, B.Wiendlocha, and A.M.Chamoire (2012), Energy Environ.Sci.5, p.5510.  
23. M.S.Park, J.H.Song, J.E.Medvedeva, M.Kim, I.G.Kim, and A.J.Freeman (2010), Phys.Rev.B  
81, p.155211.  
24. K.Nishikawa, Y.Takeda, and T.Motohiro (2013), Appl.Phys.Lett. 102, p.33903.  
25. J.N.Kim, M.Kaviany and J-H.Shim (2016),Phys.Rev.B 93, p.75119.  
MẬT ĐỘ TRẠNG THÁI VÀ TÍNH CHẤT NHIỆT ĐIỆN CỦA Bi2Se3  
DƯỚI TÁC DỤNG CỦA THAY THẾ NGUYÊN TỐ O  
Tóm tắt: Hiện tượng nhiệt điện tuy đã được phát hiện từ lâu xong những ứng dụng trong  
thực tiễn sản xuất đến nay vẫn gặp nhiều khó khăn do hiệu suất chuyển đổi nhiệt thành  
điện còn rất thấp. Khoa học vật liệu tập trung phát triển những khía cạnh khác nhau cho  
phép tăng cao hiệu suất là một bài toán thời sự. Các chất nhiệt điện hiện tại được biết hoạt  
động ở nhiệt độ phòng cho hiệu suất cao nhất hiện nay đều thuộc lớp các vật liệu  
chalcogenides. Trong bài báo cáo này, chúng tôi sử dụng lý thuyết phiếm hàm mật độ trong  
gần đúng mật độ địa phương nghiên cứu trạng thái nền và tính chất vận chuyển của bán  
dẫn Bi2Se3 với sự thay thế của nguyên tố O. Kết quả cho thấy trong hợp chất mới được tạo  
thành là một bán dẫn vùng cấm khá rộng, cỡ 0.33 eV. Mật độ trạng thái ở vùng dẫn cho  
thấy sự xuất hiện của các nhánh nhẹ (light bands) mà kết quả là độ dẫn ở chế độ hạt tải n  
là lớn. Trong khi đó mật độ trạng thái ở vùng hóa trị có độ dốc rất lớn. Điều này ảnh hưởng  
đáng kể đến suất điện động nhiệt điện của vật liệu này. Để làm rõ hơn tính chất này, chúng  
tôi thực hiện tính toán các hệ số nhiệt điện bằng cách sử dụng nghiệm của phương trình  
Boltzmann bán cổ điển. Kết quả cho thấy độ dẫn điện của vật liệu ở chế độ hạt tải điện tử  
lớn hơn khi tăng nồng độ hạt tải. Sự cạnh tranh giữu suất điện động nhiệt điện và độ dẫn  
dẫn tới kết quả là hệ số công suất, đại lượng quyết định hiệu suất chuyển hóa nhiệt – điện  
của vật liệu, ở trạng thái nồng độ hạt dẫn cao tăng lên đáng kể. Kết quả tính toán phù hợp  
với kết quả thực nghiệm và các báo cáo tính toán khác. Như vậy, việc tăng nồng độ hạt tải  
là một biện pháp tiềm năng cho phép tăng hiệunăng nhiệt điện của vật liệu này.  
Từ khóa: Hiệu ứng nhiệt điện, chalcogenide, hệ số Seebeck, lý thuyết phiếm hàm mật độ.  
pdf 10 trang yennguyen 18/04/2022 1900
Bạn đang xem tài liệu "Electronic structure and thermoelectric properties of BI2SE3 under oxygen substitution", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

File đính kèm:

  • pdfelectronic_structure_and_thermoelectric_properties_of_bi2se3.pdf