Multi-criteria group decision making with picture linguistic numbers

VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2016) 39–52  
Multi-criteria Group Decision Making  
with Picture Linguistic Numbers  
Pham Hong Phong1,, Bui Cong Cuong2  
1 Faculty of Information Technology, National University of Civil Engineering,  
55 Giai Phong Road, Hanoi, Vietnam  
2 Institute of Mathematics, Vietnam Academy of Science and Technology,  
18 Hoang Quoc Viet Road, Building A5, Cau Giay, Hanoi, Vietnam  
Abstract  
In 2013, Cuong and Kreinovich defined picture fuzzy set (PFS) which is a direct extension of fuzzy set (FS) and  
intuitionistic fuzzy set (IFS). Wang et al. (2014) proposed intuitionistic linguistic number (ILN) as a combination of  
IFS and linguistic approach. Motivated by PFS and linguistic approach, this paper introduces the concept of picture  
linguistic number (PLN), which constitutes a generalization of ILN for picture circumstances. For multi-criteria  
group decision making (MCGDM) problems with picture linguistic information, we define a score index and two  
accuracy indexes of PLNs, and propose an approach to the comparison between two PLNs. Simultaneously, some  
operation laws for PLNs are defined and the related properties are studied. Further, some aggregation operations  
are developed: picture linguistic arithmetic averaging (PLAA), picture linguistic weighted arithmetic averaging  
(PLWAA), picture linguistic ordered weighted averaging (PLOWA) and picture linguistic hybrid averaging (PLHA)  
operators. Finally, based on the PLWAA and PLHA operators, we propose an approach to handle MCGDM under  
PLN environment.  
Received 18 March 2016, Revised 07 October 2016, Accepted 18 October 2016  
Keywords: Picture fuzzy set, linguistic aggregation operator, multi-criteria group decision making, linguistic group  
decision making.  
1. Introduction  
types: “yes”, “abstain”, “no” and “refusal”.  
Voting can be a good example of such  
situation as the voters may be divided into  
four groups: “vote for”, “abstain”, “vote  
against” and “refusal of voting”. There  
has been a number of studies that show  
the applicability of PFSs (for example, see  
[18, 19, 20]).  
Cuong and Kreinovich [7] introduced the  
concept of picture fuzzy set (PFS), which is  
a generalization of the traditional fuzzy set  
(FS) and the intuitionistic fuzzy set (IFS).  
Basically, a PFS assigns to each element a  
positive degree, a neural degree and a negative  
degree. PFS can be applied to situations that  
require human opinions involving answers of  
Moreover, in many decision situations,  
experts’ preferences or evaluations are given  
by linguistic terms which are linguistic values  
Corresponding author. Email.: phphong84@yahoo.com  
39  
40 P.H. Phong, B.C. Cuong / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2016) 39–52  
of a linguistic variable [32]. For example,  
when evaluating a cars speed, linguistic terms  
like “very fast”, “fast” and “slow” can be used.  
To date, there are many methods proposed to  
dealing with linguistic information. These  
methods are mainly divided into three groups.  
1) The methods based on membership  
functions: each linguistic term is represented  
as a fuzzy number characterized by a  
accuracy of linguistic aggregation operators  
by extending the linguistic term set,  
n
o
S
=
s0, s1, . . . , sg , to the continuous one,  
¯
S
=
{ sθ| θ [0, t]}, where  
t
(
t > g) is a  
¯
suciently large positive integer. For sθ S  
,
if sθ S  
, sθ is called an original linguistic  
term; otherwise, an extended (or virtual)  
linguistic term. Based on this representation,  
some aggregation operators were defined:  
linguistic averaging (LA) [26], linguistic  
weighted averaging (LWA) [26], linguistic  
ordered weighted averaging (LOWA) [26],  
linguistic hybrid aggregation (LHA) [27],  
induced LOWA (ILOWA) [26], generalized  
ILOWA (GILOWA) [25] operators.  
membership function.  
These methods  
compute directly on the membership  
functions using the Extension Principle [13].  
´
Herrera and Martınez [11] described an  
aggregation operator based on membership  
functions by  
3) The methods based on 2-tuple  
˜
app1  
F
S n → F (R) S,  
representation:  
Herrera and Martınez  
´
[11] proposed a new linguistic computational  
where S n denotes the  
the linguistic term set  
n
-Cartesian product of  
model using an added parameter to each  
linguistic term. This new parameter is called  
sybolic translation. So, linguistic information  
˜
S , F symbolizes an  
aggregation operator, F (R) denotes the set of  
fuzzy numbers, and app1 is an approximation  
is presented as a 2-tuple (s, α), where  
a linguistic term, and is a numeric value  
s is  
function that returns a linguistic term in  
S
α
whose meaning is the closest one to each  
representing a sybolic translation. This model  
makes processes of computing with linguistic  
terms easily without loss of information.  
Some aggregation operation for 2-tuple  
representation were also defined [11]: 2-tuple  
arithmetic mean (TAM), 2-tuple weighted  
averaging (TWA), 2-tuple ordered weighted  
averaging (TOWA) operators.  
obtained unlabeled fuzzy number in F (R)  
In some early applications, linguistic terms  
were described via triangular fuzzy numbers  
.
[1, 4, 15], or trapezoidal fuzzy numbers  
[5, 14].  
2) The methods based on ordinal scales: the  
main idea of this approach is to consider the  
linguistic terms as ordinal information [28].  
It is assumed that there is a linear ordering  
Motivated by Atanassov’s IFSs [  
2, 3],  
Wang et al. [22 23] proposed intuitionistic  
,
n
o
on the linguistic term set  
S
=
s0, s1, . . . , sg  
linguistic number (ILN) as a relevant tool to  
modelize decision situations in which each  
assessment consists of not only a linguistic  
term but also a membership degree and a  
nonmembership degree. Wang also defined  
some operation laws and aggregation for  
ILNs: intuitionistic linguistic arithmetic  
such that si sj if and only if i j.  
Based on elementary notions: maximum,  
minimum and negation, many aggregation  
operators have been proposed [9, 10, 12, 21,  
24, 29, 30].  
In 2008, Xu  
[
24  
]
introduced  
a
computational model to improve the  
averaging  
[
22  
]
(ILAA), intuitionistic  
P.H. Phong, B.C. Cuong / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2016) 39–52 41  
linguistic weighted arithmetic averaging  
(ILWAA) [22], intuitionistic linguistic  
For each x X  
νA (x) is termed as the refusal degree of  
. If ξA (x) = 0 for all x X is reduced to  
an IFS [ ]; and if ηA (x) ξA (x) = 0 for all  
x X, A is degenerated to a FS [31].  
,
ξA (x) = 1µA (x)ηA (x)−  
x
in  
ordered weighted averaging (ILOWA) [23  
and intuitionistic hybrid aggregation [23  
]
]
A
, A  
2,  
3
=
(IHA) operators. Another concept, which  
also generalizes both the linguistic term and  
the intuitionistic fuzzy value at the same time,  
is intuitionistic linguistic term [6, 8, 16, 17].  
The rest of the paper is organized  
Example 1. Let denotes the set of  
A
all patients who suer from “high blood  
pressure”. We assume that, assessments of  
20 physicians on blood pressure of the patient  
as follows.  
Section 2 recalls some  
x
are divided into four groups: “high blood  
relevant definitions: picture fuzzy sets  
and intuitionistic fuzzy numbers. Section 3  
introduces the concept of picture linguistic  
number (PLN), which is a generalization  
pressure” (7 physicians), “low blood pressure”  
(4 physicians), “blood pressure disease” (3  
physicians), “ not blood disease pressure” (6  
physicians). The set  
A can be considered as  
of ILN for picture circumstances.  
In  
a PFS. The possitive degree, neural degree,  
negative degree and refusal degree of the  
patient x in A can be specified as follows.  
Section 4, some aggregation operations  
are developed: picture linguistic arithmetic  
averaging (PLAA), picture linguistic  
weighted arithmetic averaging (PLWAA),  
picture linguistic ordered weighted averaging  
(PLOWA) and picture linguistic hybrid  
averaging (PLHA) operators. In Section 5,  
based on the PLWAA and PLHA operators,  
we propose an approach to handle MCGDM  
under PLNs environment. Section 6 is an  
illutrative example of the proposed approach.  
Finally, Section 7 draws a conclusion.  
7
20  
3
20  
µA (x) =  
= 0.35, ηA (x) =  
= 0.15,  
4
νA (x) =  
= 0.2, ξA (x) = 0.3.  
20  
Some more definitions, properties of PFSs  
can be referred to [7].  
2.2. Intuitionistic linguistic numbers  
From now on, the continuous linguistic  
¯
term set  
S
=
{ sθ| θ [0, t]} is used as  
linguistic scale for linguistic assessments.  
2. Related works  
Let X , , based on the linguistic term set  
2.1. Picture fuzzy sets  
and the intuitionistic fuzzy set [2, 3], Wang  
Definition 1. [7] A picture fuzzy set (PFS)  
A in a set X , is an object of the form  
and Li [22] defined the intuitionistic linguistic  
number set as follows.  
n
o
   
ꢂꢃ  
A = x, sθ(x), µA (x) , νA (x) x X , (3)  
which is characterized by a linguistic term  
A = {(x, µA (x) , ηA (x) , νA (x)) |x X} , (1)  
where µA  
,
ηA  
,
νA  
:
X [0, 1]. For each x X  
,
s
θ(x), a membership degree µA (x) and a non-  
µA (x) ηA (x) and νA (x) are correspondingly  
,
membership degree νA (x) of the element  
sθ (x), where  
x to  
called the positive degree, neutral degree and  
negative degree of x in A, which satisfy  
¯
µA : X S [0, 1] , x sθ(x) µA (x) ,  
µA (x) + ηA (x) + νA (x) 1, x X. (2)  
(4)  
42 P.H. Phong, B.C. Cuong / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2016) 39–52  
¯
νA : X S [0, 1] , x sθ(x) νA (x) ,  
arithmetic averaging [22], intuitionistic  
linguistic ordered weighted averaging [23],  
intuitionistic linguistic hybrid aggregation  
operator [23] operators, and developed an  
approach to deal with the MCGDM problems,  
in which the criteria values are ILNs [23] .  
(5)  
with the condition  
µA (x) + νA (x) 1, x X.  
(6)  
Each  
s
θ(x), µA (x) , νA (x) defined in (3) is  
termed as an intuitionistic linguistic number  
which exactly given in Definition 2.  
3. Picture linguistic numbers  
Definition 6. Let X , , then a picture  
Definition 2.  
[
22  
]
An  
intuitionistic  
linguistic number set  
A in X is an object  
linguistic number (ILN)  
α
is defined as  
having the following form:  
¯
α
=
s
θ(α), µ (α) , ν (α) , where sθ(α) S  
n
o
   
ꢂꢃ  
A = x, sθ(x), µA (x) , ηA (x) , νA (x) x X ,  
is a linguistic term, µ (α) [0, 1] (resp.  
ν (α) [0, 1]) is the membership degree  
(resp. non-membership degree) such that  
(9)  
which is characterized by a linguistic term  
¯
sθ(x) S , a positive degree µA (x) [0, 1], a  
µ (α)  
denoted by .  
+
ν (α) 1. The set of all ILNs is  
neural degree ηA (x) [0, 1] and a negative  
degree νA (x) [0, 1] of the element  
x to sθ(x)  
with the condition  
Definition 3. [22] Let α, β , then  
D
(1) α β = sθ(α)+θ(β)  
,
E
µA (x) + ηA (x) + νA (x) 1, x X. (10)  
θ(α)µ(α)+θ(β)µ(β) θ(α)ν(α)+θ(β)ν(β)  
,
;
θ(α)+θ(β)  
θ(α)+θ(β)  
ξA (x) = 1 µA (x) ηA (x) νA (x) is called  
(2) λα  
[0, 1].  
=
sλθ(α), µ (α) , ν (α) , for all λ ∈  
the refusal degree of x to sθ(x) for all x X.  
In cases ηA (x) = 0 (for all x X), the  
picture linguistic number set is returns to the  
intuitionistic linguistic number set [22].  
Definition 4.  
[
23] For α , the score  
h (α) and the accuracy H (α) of  
α
are  
respectively given in Eqs. (7) and (8).  
For convenience, each 4-tuple  
θ(α), µ (α) , η (α) , ν (α) is called a picture  
linguistic number (PLN), where sθ(α) is a  
α
=
s
h (α) = θ (α) (µ (α) ν (α)) ,  
H (α) = θ (α) (µ (α) + ν (α)) .  
(7)  
(8)  
linguistic term, µ (α) [0, 1]  
,
+
η (α) [0, 1]  
ν (α) [0, 1]  
η (α) and ν (α) are membership, neutral  
and nonmembership degrees of an evaluated  
object to θ(α), respectively. Two PLNs and  
are said to be equal, θ (α)  
µ (α) µ (β) η (α) ν (β)  
Let denotes the set of all PLNs.  
,
.
ν (α) [0, 1] and µ (α)  
µ (α)  
+
η (α)  
Definition 5.  
said to be greater than  
one of the following conditions is satisfied.  
(1) If h (α) > h (β);  
(2) If h (α) = h (β), and H (α) > H (β).  
[23] Consider  
α
,
β ,  
α is  
,
β
, denoted by α > β, if  
s
α
=
=
β
α
=
β
, if θ (α)  
η (β) and ν (α)  
,
.
=
,
=
Based on basic operators (Definition 3)  
and order relation (Definition 5), Wang et al.  
defined the intuitionistic linguistic weighted  
Example 2. α  
hs4, 0.3, 0.3, 0.2i is a  
=
PLN, and from it, we know that the positive  
P.H. Phong, B.C. Cuong / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2016) 39–52 43  
degree, neural degree, negative degree and  
the refusal degree of evaluated object to s4  
are 0.3, 0.3, 0.2 and 0.2, respectively.  
and  
ν ((α β) γ)  
θ α ν α + θ β ν β + θ γ ν γ  
( ) ( )  
( ) ( )  
( ) ( )  
=
.
θ (α) + θ (β) + θ (γ)  
Hence,  
In the following, some operational laws of  
PLNs are introduced.  
(α β) γ = hθ (α) θ (β) θ (γ) ,  
θ (α) µ (α) + θ (β) µ (β) + θ (γ) µ (γ)  
θ (α) + θ (β) + θ (γ)  
θ (α) η (α) + θ (β) η (β) + θ (γ) η (γ)  
θ (α) + θ (β) + θ (γ)  
θ (α) ν (α) + θ (β) ν (β) + θ (γ) ν (γ)  
θ (α) + θ (β) + θ (γ)  
Definition 7. Let α, β , then  
D
θ(α)µ(α)+θ(β)µ(β)  
(1) α β = sθ(α)+θ(β)  
,
,
θ(α)+θ(β)  
,
E
θ(α)η(α)+θ(β)η(β) θ(α)ν(α)+θ(β)ν(β)  
+
,
;
θ(α)+θ(β)  
θ(α)+θ(β)  
.
(2) λα  
=
s
λθ(α), µ (α) , η (α) , ν (α) , for all  
λ [0, 1].  
(11)  
By the same way, α (β γ) equals to the right of  
Eq. (11). Therefore, (α β) γ = α (β γ).  
It is easy to prove that both α β and λα  
λ [0, 1]) are PLNs. Proposition 1 further  
(
(3) We have  
D
examines properties of aforesaid notions.  
λ (α β) = sλ(θ(α)+θ(β))  
,
θ (α) µ (α) + θ (β) µ (β) θ (α) η (α) + θ (β) η (β)  
,
,
Proposition 1. Let  
[0, 1], we have:  
α,  
β
,
γ , and  
λ,  
ρ ∈  
θ (α) + θ (β)  
θ (α) ν (α) + θ (β) ν (β)  
θ (α) + θ (β)  
θ (α) + θ (β)  
+
(1) α β = β α;  
*
(2) (α β) γ = α (β γ);  
(3) λ (α β) = λα λβ;  
λθ (α) µ (α) + λθ (β) µ (β)  
λθ (α) + λθ (β)  
= sλθ(α)+λθ(β)  
,
,
(4) If λ + ρ 1, (λ + ρ) α = λα ρα.  
λθ (α) η (α) + λθ (β) η (β)  
λθ (α) + λθ (β)  
,
+
Proof. (1) It is straightforward.  
(2) We have  
λθ (α) ν (α) + λθ (β) ν (β)  
λθ (α) + λθ (β)  
= sλθ(α), µ (α) , η (α) , ν (α)  
D
E
θ ((α β) γ) = θ (α) θ (β) θ (γ) .  
sλθ(β), µ (β) , η (β) , ν (β)  
=λα λβ.  
µ ((α β) γ)  
 
(4) We have  
θ (α) η (α) + θ (β) η (β)  
θ (α) + θ (β)  
D
E
= (θ (α) + θ (β))  
(λ + ρ) α = s(λ+ρ)θ(α), µ (α) , η (α) , ν (α)  
*
λθ (α) µ (α) + ρθ (α) µ (α)  
+ θ (γ) µ (γ)) / (θ (α) + θ (β) + θ (γ))  
= sλθ(α)+ρθ(α)  
,
,
λθ (α) + ρθ (α)  
θ (α) µ (α) + θ (β) µ (β) + θ (γ) µ (γ)  
λθ (α) η (α) + ρθ (α) η (α)  
λθ (α) + ρθ (α)  
=
.
,
θ (α) + θ (β) + θ (γ)  
+
λθ (α) ν (α) + ρθ (α) ν (α)  
λθ (α) + ρθ (α)  
Similarly,  
= sλθ(α), µ (α) , η (α) , ν (α)  
η ((α β) γ)  
D
E
sρθ(α), µ (α) , η (α) , ν (α)  
=λα ρα.  
θ (α) η (α) + θ (β) η (β) + θ (γ) η (γ)  
θ (α) + θ (β) + θ (γ)  
=
,
44 P.H. Phong, B.C. Cuong / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2016) 39–52  
and  
In order to compare two PLNs, we define the score,  
first accuracy and second accuracy for PLNs.  
β α ⇔  
h (β) h (α)  
(16)  
h (β) , h (α) or H1 (β) H1 (α)  
Definition 8. We define the score h (α), first  
h β , h α or H1 β , H1  
or H2 (β) H2 (α).  
( )  
( )  
( )  
α
( )  
accuracy H1 (α) and second accuracy H2 (α) for α ∈  
as in Eqs. (12), (13) and (14).  
Combining (15) and (16), we get h (α)  
= h (β),  
h (α) = θ(α) (µ (α) ν (α)) ,  
(12)  
H1 (α) = H1 (β) and H2 (α) = H2 (β). Thus α β.  
(2) Taking account of Definition 9, we get  
H1 (α) = θ(α) (µ (α) + ν (α)) ,  
(13)  
(14)  
h (α) > h (β)  
H2 (α) = θ (α) (µ (α) + η (α) + ν (α)) .  
h (α) = h (β) and H1 (α) > H1 (β)  
h (α) = h (β) and H1 (α) = H1 (β)  
and H2 (α) > H2 (β),  
(17)  
Definition 9. For  
α
,
β ,  
α is said to be greater  
than , denoted by α > β, if one of following three  
β
and  
cases is satisfied:  
(1) h (α) > h (β);  
(2) h (α) = h (β) and H1 (α) > H1 (β);  
(3) h (α) = h (β), H1 (α) = H1 (β) and H2 (α) > H2 (β).  
h (β) > h (γ)  
h (β) = h (γ) and H1 (β) > H1 (γ)  
h (β) = h (γ) and H1 (β) = H1 (γ)  
and H2 (β) > H2 (γ).  
(18)  
It is easy seen that there exist pairs of PLNs  
which are not comparable by Definition 9. For  
Pairwise combining conditions of (17) and (19), we  
obtain  
example, let us consider  
hs4, 0.2, 0.1, 0.1i. We have h (α)  
H1 (β) and H2 (α)  
α
=
hs2, 0.4, 0.2, 0.2i and  
h (α) > h (γ)  
β
=
=
h (β) H1 (α)  
,
=
h (α) = h (γ) and H1 (α) > H1 (γ)  
h (α) = h (γ) and H1 (α) = H1 (γ)  
and H2 (α) > H2 (γ).  
=
H2 (β). Then, neither α β nor  
(19)  
β α occurs. In these cases,  
α
and  
β
are said to be  
equivalent.  
Then, α > γ.  
Let (α1, . . . , αn) be a collection of PLNs, we denote:  
Definition 10. Two PLNs  
α
and  
β
are termed as  
n
o
equivalent, denoted by α β, if they have the same  
score, first accuracy and second accuracy, that is  
h (α) = h (β), H1 (α) = H1 (β) and H2 (α) = H2 (β).  
arcminh (α1, . . . , αn) = αj h αj = min {h (αi)} ,  
n
o
arcminH (α1, . . . , αn) = αj H1 αj = min {H1 (αi)} ,  
1
n
o
arcmin (α1, . . . , αn) = αj H2 αj = min {H2 (αi)} ,  
Proposition 2. Let us consider α, β, γ , then  
(1) There are only three cases of the relation between  
α and β: α > β, β > α or α β.  
H2  
n
o
arcmaxh (α1, . . . , αn) = αj h αj = max {h (αi)} ,  
n
o
(2) If α > β and β > γ, then α > γ;  
arcmaxH (α1, . . . , αn) = αj H1 αj = max {H1 (αi)} ,  
1
n
o
arcmaxH (α1, . . . , αn) = αj H2 αj = max {H2 (αi)} .  
2
Proof. (1) We assume that α β and β α. By  
Definition 9,  
Definition 11. Lower bound and upper bound of  
the collection of PLNs (α1, . . . , αn) are respectively  
defined as  
α β ⇔  
h (α) h (β)  
α= arcminH arcminH (arcminh (α1, . . . , αn)) ,  
(15)  
h (α) , h (β) or H1 (α) H1 (β)  
2
1
h α , h β or H1 α , H1  
or H2 (α) H2 (β),  
( )  
( )  
( )  
β
( )  
α+ = arcmaxH arcmaxH (arcmaxh (α1, . . . , αn)) .  
2
1
P.H. Phong, B.C. Cuong / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2016) 39–52 45  
Based on Definitions 9, 10 and 11, the following  
proposition can be easily proved.  
Proof. By Definition 7, aggregated value by using  
PLWAA is also a PLN. In the next step, we prove (23)  
by using mathematical induction on n.  
Proposition 3. For each collection of PLNs  
(α1, . . . , αn),  
1) For n = 2: By Definition 7,  
α. αi . α+, i = 1, . . . , n.  
(20)  
w1α1 = sw θ(α ), µ (α1) , η (α1) , ν (α1) ,  
(24)  
(25)  
1
1
The  
.
in the left of Eq. (20) means that for all αj α−  
,
and  
we have αj < αi or αj αi. Similar for the  
. in the  
right.  
w2α2 = sw θ(α ), µ (α2) , η (α2) , ν (α2) .  
2
2
4. Aggregation operators of PLNs  
We thus obtain  
In this section some operators, which aggregate  
PLNs, are proposed: picture linguistic arithmetic  
averaging (PLAA), picture linguistic weighted  
arithmetic averaging (PLWAA), picture linguistic  
ordered weighted averaging (PLOWA) and picture  
linguistic hybrid aggregation (PLHA) operators.  
Throughout this paper, each weight vector is with  
respect to a collection of non-negative number with the  
total of 1.  
w1α1 w2α2 = sw θ(α )+w θ(α )  
,
1
1
2
2
w1θ (α1) µ (α1) + w2θ (α2) µ (α2)  
w1θ (α1) + w2θ (α2)  
,
,
,
w1θ (α1) η (α1) + w2θ (α2) η (α2)  
w1θ (α1) + w2θ (α2)  
w1θ (α1) ν (α1) + w2θ (α2) ν (α2)  
(26)  
+
w1θ (α1) + w2θ (α2)  
i. e., (23) holds for n = 2.  
2) Let us assume that (23) holds for  
is  
Definition 12. Picture linguistic arithmetic  
n
=
k
(
k 2), that  
averaging (PLAA) operator is  
a
mapping  
PLAA : n defined as  
1
n
w1α1 . . . wkαk =  
PLAA (α1, . . . , αn) = (α1 ⊕ · · · ⊕ αn) ,  
(21)  
k
P
*
wiθ (αi) µ (αi)  
where (α1, . . . , αn) is a collection of PLNs.  
i=1  
s k  
i=1  
,
,
P
Definition 13. Picture  
linguistic  
weighted  
k
wiθ(αi)  
P
wiθ (αi)  
arithmetic averaging (PLWAA) operator is a mapping  
(27)  
i=1  
PLWAA : n defined as  
k
k
P
P
+
wiθ (αi) η (αi)  
wiθ (αi) ν (αi)  
PLWAAw (α1, . . . , αn) = w1α1 ⊕ · · · ⊕ wnαn, (22)  
i=1  
i=1  
,
.
k
k
P
P
where  
w =  
(w1, . . . , wn) is the weight vector of the  
wiθ (αi)  
wiθ (αi)  
collection of PLNs (α1, . . . , αn).  
i=1  
i=1  
Proposition 4. Let (α1, . . . , αn) be a collection of  
Then,  
PLNs, and  
w =  
(w1, . . . , wn) be the weight vector of  
this collection, then PLWAAw (α1, . . . , αn) is a PLN  
and  
w1α1 . . . wkαk wk+1αk+1  
k
P
*
wiθ (αi) µ (αi)  
PLWAAw (α1, . . . , αn) =  
i=1  
n
= s k  
,
,
P
P
k
*
wiθ(αi)  
wiθ (αi) µ (αi)  
P
i=1  
wiθ (αi)  
i=1  
n
s
,
,
P
i=1  
n
wiθ(αi)  
P
i=1  
k
k
wiθ (αi)  
P
P
(23)  
i=1  
+
wiθ (αi) η (αi)  
wiθ (αi) ν (αi)  
i=1  
i=1  
n
n
P
P
,
+
wiθ (αi) η (αi)  
wiθ (αi) ν (αi)  
k
k
P
P
i=1  
i=1  
wiθ (αi)  
wiθ (αi)  
,
.
n
n
i=1  
i=1  
P
P
wiθ (αi)  
wiθ (αi)  
sw  
), µ (αk+1) , η (αk+1) , ν (αk+1  
)
k+1θ(αk+1  
i=1  
i=1  
46 P.H. Phong, B.C. Cuong / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2016) 39–52  
*
 
!
= s  
,
(5) Associativity: Consider an added collection of  
k
P
wiθ(αi) +wk+1αk+1  
PLNs (γ1, . . . , γm) with the associated weight vector  
i=1  
 
!
P
w0 = w01, . . . , w0m  
,
k
wiθ (αi) µ (αi) + wk+1θ (αk+1) µ (αk+1  
)
i=1  
 
!
,
PLWAAu (α1, . . . , αn, γ1, . . . , γm)  
=PLWAAv (PLWAAw (α1, . . . , αn) ,  
k
P
wiθ (αi) + wk+1θ (αk+1  
)
i=1  
 
!
k
0
PLWAAw (γ1, . . . , γm)) ,  
P
wiθ (αi) η (αi) + wk+1θ (αk+1) η (αk+1  
)
i=1  
w0  
2
wm0  
2
 
!
,
where u = 1 , . . . , wn  
,
1 , . . . ,  
and v =  
,
.
w
1
2
1
2
k
P
2
2
wiθ (αi) + wk+1θ (αk+1  
)
i=1  
 
!
k
P
Definition 14. Picture linguistic ordered weighted  
wiθ (αi) ν (αi) + wk+1θ (αk+1) ν (αk+1)+  
averaging (PLOWA) operator is a mapping PLOWA  
:
i=1  
 
!
n defined as  
k
P
wiθ (αi) + wk+1θ (αk+1  
)
i=1  
PLOWAω (α1, . . . , αn) = ω1β1 ⊕ · · · ⊕ ωnβn, (28)  
k+1  
P
*
wiθ (αi) µ (αi)  
where  
ω
=
(ω1, . . . , ωn) is the weight vector of the  
= 1, . . . , n) is the -th  
largest of the totally comparable collection of PLNs  
i=1  
= sk+1  
,
,
P
PLOWA operator and βj (  
j
j
k+1  
wiθ(αi)  
P
i=1  
wiθ (αi)  
i=1  
(α1, . . . , αn).  
k+1  
k+1  
P
P
+
wiθ (αi) η (αi)  
wiθ (αi) ν (αi)  
i=1  
i=1  
,
.
Definition 14 requires that all pairs of PLNs of the  
collection (α1, . . . , αn) are comparable. We further  
consider the cases when the collection (α1, . . . , αn) is  
k+1  
k+1  
P
P
wiθ (αi)  
wiθ (αi)  
i=1  
i=1  
This implies that, (23) holds for  
completes the proof.  
According to Definitions 9, 10, 13, Propositions  
3 and 4, it can be easily proved that the PLWAA  
operator has the following properties. Let (α1, . . . , αn)  
be a collection of PLNs with the weight vector  
(w1, . . . , wn), we have:  
n
=
k
+ 1, which  
not totally comparable. If αi αj and θ (αi) < θ αj  
,
we assign αj to αi. It is reasonable since αi and αj have  
the same score, first accuracy and second accuracy.  
Example 3. Let us consider α1  
hs4, 0.2, 0.3, 0.3i hs2, 0.1, 0.2, 0.6i  
α3  
(0.2, 0.4, 0.15, 0.25). Taking  
=
hs2, 0.2, 0.4, 0.4i  
,
=
w =  
α2  
=
,
=
,
α4  
hs4, 0.1, 0.2, 0.2i and  
ω =  
(1) Idempotency: If αi = α for all i = 1, . . . , n,  
Definitions 9 and 10 into account, we get  
PLWAAw (α1, . . . , αn) = α.  
(2) Boundary:  
α2 > α1 α4 > α3.  
(29)  
α4 is assigned to α1  
th position of weight vector  
. By adding the 2-th and 3-  
ω
, we obtain ω0  
=
α. PLWAAw (α1, . . . , αn) . α+.  
(0.2, 0.55, 0.25). Hence,  
(3) Monotonicity: Let α1, . . . , αnbe a collection of  
PLNs such that αi αi for all i = 1, . . . , n, then  
0
PLOWAω (α1, α2, α3, α4) = PLOWAω (α1, α2, α3) .  
In this case, β1 = α2, β2 = α1 and β3 = α3.  
PLWAAw α1, . . . , αnPLWAAw (α1, . . . , αn) .  
(4) Commutativity:  
In the same way as in Proposition 4, we have the  
following proposition.  
0
PLWAAw (α1, . . . , αn) = PLWAAw  
α
σ(1), . . . , ασ(n)  
,
where  
σ
is any permutation on the set {1, . . . , n} and  
Proposition 5. Let (α1, . . . , αn) be a collection of  
PLNs, and ω =  
(ω1, . . . , ωn) be the weight vector of  
w0 = wσ(1), . . . , wσ(n)  
.
P.H. Phong, B.C. Cuong / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2016) 39–52 47  
the PLOWA, then PLOWAω (α1, . . . , αn) is a PLN and  
PLOWAω (α1, . . . , αn) =  
(3) Monotonicity: Let α1, . . . , αnbe a totally  
comparable collection of PLNs such that αi αi for  
all i = 1, . . . , n, then  
     
ωjθ βj  
n
P
ωjθ βj µ βj  
PLOWAω α1, . . . , αnPLOWAω (α1, . . . , αn) ;  
*
j=1  
n
s
,
j
,
P
   
ωjθ βj ν βj  
n
ω θ β  
j
P
( )  
j=1  
(4) Commutativity:  
(30)  
j=1  
     
ωjθ βj  
     
ωjθ βj  
n
n
P
P
PLOWAω (α1, . . . , αn) = PLOWAω  
α
σ(1), . . . , ασ(n)  
,
ωjθ βj η βj  
+
j=1  
j=1  
,
,
where σ is any permutation on the set {1, . . . , n}.  
   
   
n
n
P
P
(5) Associativity:  
Consider an added totally  
j=1  
j=1  
comparable collection of PLNs (γ1, . . . , γm) with the  
associated weight vector ω0  
. . . αn γ1 . . . γm,  
=
ω01, . . . , ωm0 . If α1 ≥  
with βj  
(
j
= 1, . . . , n) is the  
j
-th largest of the collection  
(α1, . . . , αn).  
PLOWA(α1, . . . , αn, γ1, . . . , γm)  
=PLOWAδ (PLOWAω (α1, . . . , αn) ,  
Example 4. (Continuation of Example 3) We have  
0
PLOWAω (α1, α2, α3) = α¯,  
(31)  
0
PLOWAω (γ1, . . . , γm)) ,  
where α¯ is determined as follows.  
ω0  
ωm0  
2
, . . . , ωn  
,
1 , . . . ,  
and δ =  
,
.
ω1  
2
1
2
1
2
where =  
2
2
θ (α¯) = ω01 × θ (β1) + w20 × θ (β2) + w30 × θ (β3)  
= 0.2 × 4 + 0.55 × 2 + 0.25 × 2 = 2.4,  
Proposition 6 shows some special cases of the  
PLOWA operator.  
Proposition 6. Let (α1, . . . , αn) be  
comparable collection of PLNs, and  
be the weight vector, then  
a
totally  
µ (α¯)  
= w01 × θ (β1) × µ (β1) + w20 × θ (β2) × µ (β2)  
ω =  
(ω1, . . . , ωn)  
+w03 × θ (β3) × µ (β3) (α¯)  
(1) If  
ω
=
(1, 0, . . . , 0), then PLOWAω (α1, . . . , αn)  
=
=
max {αi};  
0.2 × 4 × 0.2 + 0.55 × 2 × 0.2 + 0.25 × 2 × 0.2  
i=1,...,n  
=
2.4  
(2) If  
ω =  
(0, . . . , 0, 1), then PLOWAω (α1, . . . , αn)  
=0.2.  
min {αi};  
i=1,...,n  
As a similarity, η (α¯) = 0.325 and ν (α¯) = 0.408. We  
(3) If ωj = 1, and ωi = 0 for all i , j, then  
finally get  
PLOWAω (α1, . . . , αn)  
of the collection of PLNs (α1, . . . , αn).  
= βj where βj is the j-th largest  
PLOWAω (α1, α2, α3, α4) = hs2.4, 0.2, 0.325, 0.408i .  
Definition 15. Picture Linguistic hybrid averaging  
(PLHA) operator for PLNs is a mapping PLHA : n  
defined as  
The PLOWA can be shown to satisfy the  
properties of idempotency, boundary, monotonicity,  
commutativity and associativity. Let (α1, . . . , αn) be  
a totally comparable collection of PLNs, and  
(ω1, . . . , ωn) be the weight vector of the PLOWA  
operator, then  
PLHAw(α1, . . . , αn) = ω1β01 ⊕ · · · ⊕ ωnβn0 ;  
ω =  
where  
PLHA operator, and β0j is the  
comparable collection of ILNs (nw1α1, . . . , nwnαn)  
with  
(w1, . . . , wn) is the weight vector of the  
ω
is the associated weight vector of the  
(1) Idempotency: If αi = α for all i = 1, . . . , n, then  
j-largest of the totally  
PLOWAω (α1, . . . , αn) = α;  
(2) Boundary:  
w
=
collection of PLNs (α1, . . . , αn).  
The Proposition 7 gives the explicit formula for  
PLHA operator.  
min {αi} ≤ PLOWAω (α1, . . . , αn) max {αi} ;  
i=1,...,n  
i=1,...,n  
48 P.H. Phong, B.C. Cuong / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2016) 39–52  
Proposition 7. Let (α1, . . . , αn) be a collection of  
PLNs,  
PLHA operator, and  
ω
=
(ω1, . . . , ωn) be the associated vector of the  
(w1, . . . , wn) be the weight  
vector of (α1, . . . , αn), then PLHAw(α1, . . . , αn) is a  
w
=
PLHAu,ꢀ (α1, . . . , αn, γ1, . . . , γm)  
=PLHAvPLHAw(α1, . . . , αn) ,  
PLNs and  
0
0
PLHAw (γ1, . . . , γm) ,  
PLHAw(α1, . . . , αn) =  
     
n
P
w0  
2
wm0  
ωjθ β0j µ β0j  
where  
u
=
, . . . , wn  
,
1 , . . . ,  
,
=
w1  
2
1 , . . . ,  
*
2
2
j=1  
P
ω0  
ωm0  
n
s
,
,
, . . . , ωn  
,
and v = δ =  
,
.
ω1  
   
1
1
2
ωjθ β0j  
P
n
ωjθ β0j  
j=1  
2We can prove that the PLWAA and PLOWA  
operators are two special cases of the PLHA  
operator as in Proposition 8.  
2
2
2
2
(32)  
j=1  
     
     
n
n
P
P
ωjθ β0j η β0j  
ωjθ β0j ν βj  
+
j=1  
j=1  
,
,
   
   
n
n
P
P
ωjθ β0j  
j=1  
ωjθ β0j  
j=1  
Proposition 8. If  
ω
=
1n, . . . , 1n , the  
where β0j is the  
j
-largest of the totally comparable  
PLHA operator is reduced to the PLWAA  
operator; and if  
w
=
1n , . . . , 1n , the PLHA  
collection of ILNs (nw1α1, . . . , nwnαn).  
operator is reduced to the PLOWA operator.  
Similar to PLWAA and PLOWA operators, the  
PLHA operator is idempotent, bounded, monotonous,  
commutative and associative. Let (α1, . . . , αn) be a  
5. GDM  
assessments  
under  
picture  
linguistic  
collection of PLNs,  
vector of the PLHA operator, and  
the weight vector of (α1, . . . , αn), then  
ω
=
(ω1, . . . , ωn) be the associated  
(w1, . . . , wn) be  
w
=
Let us consider a hypothetical situation,  
in which  
{A1, . . . , Am} is the set of  
alternatives, and  
(1) Idempotency: If αi = α for all i = 1, . . . , n, then  
A
=
PLHAw(α1, . . . , αn) = α;  
C
=
{C1, . . . , Cn} is the  
set of criteria with the weight vector  
c
=
(2) Boundary:  
n
o
(c1, . . . , cn). We assume that  
D
=
d1, . . . , dp  
α. PLHAw(α1, . . . , αn) . α+;  
is a set of decision makers (DMs), and  
w
=
(3) Monotonicity: Let α1, . . . , αnbe a collection of  
PLNs such that αi . αi for all i = 1, . . . , n, then  
w1, . . . , wp is the weight vector of DMs.  
Each DM dk presents the characteristic of  
the alternative Ai with respect to the criteria  
PLHAwα1, . . . , αn. PLHAw(α1, . . . , αn) ;  
(k)  
ij  
(k)  
(k)  
(k)  
(k)  
Cj by the PLN  
= 1, . . . , m  
α
=
sθ α , µα , ηα , να  
ij  
ij  
ij  
ij  
(4) Commutativity:  
(i  
,
j
= 1, . . . , n  
,
k
= 1, . . . , p). The  
(k)  
decision matrix Rk is given by Rk  
=
α
PLHAw(α1, . . . , αn) = PLHAw,ω  
α
σ(1), . . . , ασ(n)  
,
ij  
m×n  
(k  
= 1, . . . , p). The alternatives will be ranked  
where  
σ
is any permutation on the set  
by the following algorithm.  
{1, . . . , n} and w0 = wσ(1), . . . , wσ(n)  
.
Step 1. Derive the overall values α(ik) of the  
alternatives Ai, given by the DM dk:  
(5) Associativity: Consider an added  
collection of PLNs (γ1, . . . , γm) with the  
α(ik) = PLWAAc α(k), . . . , α(k)  
,
(33)  
associated weight vector w0  
=
w0 , . . . , w0m  
such that nw1α1 ≥ · · · nwnαn 1mw10 γ1 ≥  
· · · ≥ mw0mγm. We have  
i1  
in  
for i = 1, . . . , m, and k = 1, . . . , p.  
P.H. Phong, B.C. Cuong / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2016) 39–52 49  
Table 1. Decision matrix R1  
C1  
C2  
C3  
A1 hs4, 0.6, 0.1, 0.2i hs4, 0.4, 0.2, 0.2i hs5, 0.2, 0.3, 0.5i  
A2 hs5, 0.7, 0.2, 0.1i hs4, 0.4, 0.1, 0.4i hs4, 0.5, 0.2, 0.3i  
A3 hs5, 0.3, 0.1, 0.4i hs5, 0.4, 0.3, 0.3i hs6, 0.7, 0.1, 0.2i  
A4 hs4, 0.6, 0.1, 0.2i hs4, 0.6, 0.1, 0.2i hs5, 0.3, 0.1, 0.5i  
Step 2. Derive the collective overall values  
αi by aggregating the individual overall values  
α(i1), . . . , α(ip):  
Ai (i = 1, 2, 3, 4) by the PLHA operator with  
associated weight vector ω = (0.2, 0.5, 0.3).  
α1 = hs4.40, 0.3965, 0.2045, 0.3438i ,  
α2 = hs4.57, 0.3481, 0.1428, 0.4040i ,  
α3 = hs5.32, 0.3628, 0.1666, 0.4050i ,  
α4 = hs5.16, 0.4098, 0.1510, 0.3948i .  
αi = PLHAwα(i1), . . . , α(ip)  
,
(34)  
where  
ω
=
ω1, . . . , ωp is the weight vector  
of the PLHA operator (i = 1, . . . , m).  
Step 3. Calculate the scores h (αi), first  
accuracies H1 (αi) and second accuracies  
Step 3. By eq. (12),  
h (α1) = 0.2318, h (α2) = 0.2556  
h (α3) = 0.2246, h (α4) = 0.078.  
H2 (αi)  
(i = 1, . . . , m), rank the alternatives  
by using Definition 9 (the alternative Ai is  
1
called to be better than the alternative Ai  
,
2
By Definition 9,  
denoted by Ai > Ai , iαi > αi , for all  
1
2
1
2
i1, i2 = 1, . . . , m).  
h (α1) > h (α4) > h (α3) > h (α2)  
then A1 > A4 > A3 > A2.  
6. An illutrative example  
This situation concerns four alternative  
enterprises, which will be chosen by  
7. Conclusion  
three DMs whose weight vector is  
(0.3, 0.4, 0.3)  
The enterprises will be  
considered under three criteria C1 C2 and C3  
Assume that the weight vector of the criteria  
is  
(0.37, 0.35, 0.28). Three decision  
w
=
In this paper, motivated by picture fuzzy  
sets and linguistic approaches, the notion  
of picture linguistic numbers are first  
defined. We propose the score, first accuracy  
and second accuracy of picture linguistic  
numbers, and propose a simple approach  
for the comparison between two picture  
linguistic numbers. Simultaneously, the  
operation laws for picture linguistic numbers  
are given and the accompanied properties are  
studied. Further, some aggregation operators  
are developed: picture linguistic arithmetic  
averaging, picture linguistic weighted  
.
,
.
c
=
matrices are listed in Tabs. 1, 2 and 3.  
Step 1. Using explicit form of the PLWAA  
operation given in Eq. 23, we obtain overall  
values α(ik) of the alternatives Ai given by the  
DMs dk (i = 1, 2, 3, 4 and k = 1, 2, 3) as  
in Tab. 4.  
Step 2. Aggregate all the individual overall  
values α(i1) α(i2) and α(i3) of the alternatives  
,
50 P.H. Phong, B.C. Cuong / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2016) 39–52  
Table 2. Decision matrix R2  
C1  
C2  
C3  
A1 hs4, 0.7, 0.1, 0.2i hs6, 0.2, 0.2, 0.5i hs4, 0.7, 0.2, 0.1i  
A2 hs3, 0.2, 0.2, 0.6i hs5, 0.5, 0.1, 0.2i hs5, 0.3, 0.1, 0.4i  
A3 hs4, 0.2, 0.1, 0.5i hs7, 0.2, 0.2, 0.6i hs5, 0.1, 0.2, 0.6i  
A4 hs5, 0.7, 0.2, 0.1i hs5, 0.2, 0.1, 0.7i hs4, 0.6, 0.1, 0.2i  
Table 3. Decision matrix R3  
C1  
C2  
C3  
A1 hs4, 0.6, 0.3, 0.1i hs6, 0.2, 0.3, 0.5i hs5, 0.2, 0.1, 0.7i  
A2 hs3, 0.2, 0.2, 0.5i hs5, 0.2, 0.1, 0.6i hs6, 0.2, 0.2, 0.6i  
A3 hs5, 0.3, 0.2, 0.5i hs7, 0.8, 0.1, 0.1i hs5, 0.2, 0.2, 0.5i  
A4 hs3, 0.7, 0.1, 0.2i hs5, 0.2, 0.2, 0.5i hs6, 0.3, 0.1, 0.6i  
Table 4. Overall values α(ik) of the alternatives Ai given by the DMs dk (i = 1, 2, 3, 4; k = 1, 2, 3)  
d1  
d2  
d3  
A1 hs4.28, 0.4037, 0.1981, 0.2981i hs4.70, 0.4766, 0.1685, 0.3102i hs4.98, 0.3189, 0.2438, 0.4373i  
A2 hs4.37, 0.5526, 0.1680, 0.2474i hs4.26, 0.3561, 0.1261, 0.3700i hs4.54, 0.2000, 0.1615, 0.5756i  
A3 hs5.28, 0.4604, 0.1663, 0.3032i hs5.33, 0.1737, 0.1722, 0.5722i hs5.70, 0.4904, 0.1570, 0.3281i  
A4 hs4.28, 0.5019, 0.1000, 0.2981i hs5.28, 0.4070, 0.1682, 0.3917i hs4.54, 0.3593, 0.1385, 0.4637i  
arithmetic averaging, picture linguistic  
ordered weighted averaging and picture  
linguistic hybrid aggregation operators.  
Finally, based on the picture linguistic  
weighted arithmetic averaging and the picture  
linguistic hybrid aggregation operators, we  
propose an approach to handle multi-criteria  
group decision making problems under  
picture linguistic environment.  
References  
[1] G. I. Adamopoulos and G. P. Pappis, A  
fuzzy linguistic approach to a multicriteria  
sequencing problem, European Journal of  
Operational Research 92 (1996) 628–636.  
[2] K. T. Atanassov, Intuitionistic fuzzy sets,  
Fuzzy Sets and Systems 20 (1986) 87–96.  
[3] K. T. Atanassov and S. Stoeva, Intuitionistic  
L-fuzzy sets, in Cybernetics and Systems  
Research, eds. R. Trappl (Elsevier Science  
Pub., Amsterdam, 1986), pp. 539–540.  
[4] P. Chang and Y. Chen, A fuzzy multicriteria  
decision making method for technology  
transfer strategy selection in biotechnology,  
Fuzzy Sets and Systems 63 (1994) 131-139.  
[5] S. M. Chen, A new method for tool steel  
materials selection under fuzzy environment,  
Fuzzy Sets and Systems 92 (1997) 265–274.  
[6] Z. C. Chen, P. H. Liu and Z. Pei, An  
approach to multiple attribute group decision  
making based on linguistic intuitionistic  
fuzzy numbers, International Journal of  
Acknowledgments  
This research is funded by the Vietnam  
National Foundation for Science and  
Technology Development (NAFOSTED)  
under grant number 102.01- 2017.02.  
P.H. Phong, B.C. Cuong / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2016) 39–52 51  
Computational Intelligence Systems  
(2015) 747–760.  
8
(4)  
fuzzy sets, Journal of Intelligent & Fuzzy  
Systems28 (2) (2015) 591-604.  
[7] B. C. Cuong and V. Kreinovich, Picture  
fuzzy sets - a new concept for computational  
intelligence problems, in Proc. 3rd world  
congress on information and communication  
technologies (WICT 2013) pp. 1–6.  
[8] B. C. Cuong and P. H. Phong, Max -  
Min Composition of Linguistic Intuitionistic  
Fuzzy Relations and Application in Medical  
Diagnosis, VNU Journal of Science: Comp.  
Science & Com. Eng. 30 (4) (2014) 601–968.  
[9] F. Herrera and J. L. Verdegay, Linguistic  
assessments in group decision”, in Proc.  
First European Congress on Fuzzy and  
Intelligent Technologies (Aachen, 1993) pp.  
941–948.  
[19] L. H. Son, DPFCM: A novel distributed  
picture fuzzy clustering method on picture  
fuzzy sets, Expert Systems with Applications  
42 (2015) 51–66.  
[20] P. H. Thong and L. H. Son, Picture  
fuzzy clustering: a new computational  
intelligence method, Soft Computing DOI  
10.1007/s00500-015-1712-7  
[21] V. Torra, The weighted OWA operator,  
International Journal of Intelligent Systems  
12 (1997) 153–166.  
[22] J. Q. Wang and H. B. Li, Multi-criteria  
decision-making method based on  
aggregation operators for intuitionistic  
linguistic fuzzy numbers, Control and  
Decision 25 (10) (2010) 1571–1574, 1584.  
[23] X. F. Wang, J. Q. Wang and W. E. Yang,  
Multi-criteria group decision making method  
based on intuitionistic linguistic aggregation  
operators, Journal of Intelligent & Fuzzy  
Systems 26 (2014), 115–125.  
[10] F. Herrera and E. Herrera-Viedma,  
Aggregation operators for linguistic  
weighted information, IEEE Transactions  
on Systems, Man, and Cybernetics-Part A 27  
(1997), 646–656.  
[11] F. Herrera and L. Martınez, A 2-tuple  
´
fuzzy linguistic representation model for  
computing with words, IEEE Transactions  
on Fuzzy Systems 8 (2000) 746–752.  
[24] Z. S. Xu, Uncertain Multiple Attribute  
Decision Making: Methods and Applications  
(Tsinghua University Press, Beijing, 2004).  
[25] Z. S. Xu , Method based on fuzzy linguistic  
assessments and GIOWA operator in multi-  
attribute group decision making, Journal of  
Systems Science and Mathematical Sciences  
24 (2004) 218–224.  
[26] Z. S. Xu, On generalized induced linguistic  
aggregation operators, International Journal  
of General Systems 35 (2006) 17–28.  
[27] Z. S. Xu, A note on linguistic hybrid  
arithmetic averaging operator in group  
decision making with linguistic information,  
Group Decision and Negotiation 15 (2006)  
581–591.  
[28] R. R. Yager, A new methodology for ordinal  
multiobjective decisions based on fuzzy sets,  
Decision Sciences 12 (1981) 589–600.  
[29] R. R. Yager, Applications and extensions of  
OWA aggregations, International Journal of  
Man-Machine Studied 37 (1992) 103–132.  
[30] R. R. Yager and A. Rybalov, Understanding  
[12] F. Herrera and E. Herrera-Viedma, Choice  
functions and mechanisms for linguistic  
preference relations, European Journal of  
Operational Research 120 (2000) 144–161.  
[13] G. J. Klir and B. Yuan, Fuzzy sets an fuzzy  
logic: Theory and Applications (Prentice-  
Hall PTR, 1995).  
[14] C. K. Law, Using fuzzy numbers in  
educational grading systems, Fuzzy Sets and  
Systems 83 (1996) 311–323.  
[15] H. M. Lee, Applying fuzzy set theory  
to evaluate the rate of aggregative risk  
in software development, Fuzzy Sets and  
Systems 80 (1996) 323–336.  
[16] P. H. Phong and B. C. Cuong, Some  
intuitionistic  
linguistic  
aggregation  
operators, Journal of Computer Science and  
Cybernetics 30 (3) (2014) 216–226.  
[17] P. H. Phong and B. C. Cuong, Symbolic  
computational models for intuitionistic  
linguistic information, Journal of Computer  
Science and Cybernetics 32 (1) (2016) 30–  
44.  
the median as  
a
fusion operator,  
International Journal of General Systems 26  
(1997) 239-263.  
[18] P. Singh, Correlation coecients for picture  
52 P.H. Phong, B.C. Cuong / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 32, No. 3 (2016) 39–52  
[31] L. A. Zadeh, Fuzzy sets, Information and  
Control 8, 338–353.  
[32] L. A. Zadeh, The concept of a linguistic  
variable and its application to approximate  
reasoning-I, Information Sciences  
8 (3)  
(1975)199–249.  
pdf 14 trang yennguyen 13/04/2022 6060
Bạn đang xem tài liệu "Multi-criteria group decision making with picture linguistic numbers", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

File đính kèm:

  • pdfmulti_criteria_group_decision_making_with_picture_linguistic.pdf